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..1 What is an ancillary statistic for θ?

..2 Can an ancillary statistic be a sufficient statistic?

..3 What are the location parameter and the scale parameter?

..4 In which case ancillary statistics would be helpful?
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Last Lecture : Ancillary Statistics

.Definition 6.2.16..

......
A statistic S(X) is an ancillary statistic if its distribution does not depend
on θ.

.Examples of Ancillary Statistics..

......

• X1, · · · ,Xn
i.i.d.∼N (µ, σ2) where σ2 is known.

• s2X = 1
n−1

∑n
i=1(X1 − X)2 is an ancillary statistic

• X1 − X2 ∼ N (0, 2σ2) is ancillary.
• (X1 + X2)/2− X3 ∼ N (0, 1.5σ2) is ancillary.
• (n−1)s2X

σ2 ∼ χ2
n−1 is ancillary.
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Example : Uniform Ancillary Statistics

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(θ, θ + 1).

• Show that R = X(n) − X(1) is an ancillary statistic.

.Possible Strategies..

......

• Method 1 : Obtain the distribution of R and show that it is
independent of θ.

• Method 2 : Represent R as a function of ancillary statistics, which is
independent of θ.
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Method 2 - A Simpler Proof

fX(x|θ) = I(θ < x < θ + 1) = I(0 < x − θ < 1)

Let Yi = Xi − θ ∼ Uniform(0, 1). Then Xi = Yi + θ, |dx
dy | = 1 holds.

fY(y) = I(0 < y + θ − θ < 1)|dx
dy | = I(0 < y < 1)

Then, the range statistic R can be rewritten as follows.

R = X(n) − X(1) = (Y(n) + θ)− (Y(1) + θ) = Y(n) − Y(1)

As Y(n) − Y(1) is a function of Y1, · · · ,Yn. Any joint distribution of
Y1, · · · ,Yn does not depend on θ. Therefore, R is an ancillary statistic.
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Location-Scale Family and Parameters

.Definition 3.5.5..

......

Let f(x) be any pdf. Then for any µ,−∞ < µ < ∞, and any σ > 0 the
family of pdfs f((x − µ)/σ)/σ, indexed by the parameter (µ, σ) is called
the location-scale family with standard pdf f(x), and µ is called the
location parameter and σ is called the scale parameter for the family.

.Example..

......

• f(x) = 1√
2π

e−x2/2 ∼ N (0, 1)

• f((x − µ)/σ)/σ = 1√
2πσ2

e−(x−µ)2/2σ2 ∼ N (µ, σ2)
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Complete Statistics
.Definition..

......

• Let T = {fT(t|θ), θ ∈ Ω} be a family of pdfs or pmfs for a statistic
T(X).

• The family of probability distributions is called complete if
• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.

• In other words, g(T) = 0 almost surely.
• Equivalently, T(X) is called a complete statistic

.Example..

......

• T(X) ∼ N (0, 1)

• g1(T(X)) = 0 =⇒ Pr[g1(T(X)) = 0] = 1.
• g2(T(X)) = I(T(X) = 0) =⇒ Pr[g2(T(X)) = 0] = 1−Pr[T(X) = 0)].

In this case, g2(T(X)) = 0 is almost surely true.
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Notes on Complete Statistics

• Notice that completeness is a property of a family of probability
distributions, not of a particular distribution.

• For example, X ∼ N (0, 1) and g(x) = x makes E[g(X)] = EX = 0,
but Pr(g(X) = 0) = 0 instead of 1.

• The above example is only for a particular distribution, not a family
of distributions.

• If X ∼ N (θ, 1),−∞ < θ < ∞, then no function of X except for
g(X) = 0 satisfies E[g(X)|θ] for all θ.

• Therefore, the family of N (θ, 1) distributions, −∞ < θ < ∞, is
complete.
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Why ”Complete” Statistics?

.
Stigler (1972) Am. Stat. 26(2):28-9
..

......

• While a student encountering completeness for the first time is very
likely to appreciate its usefulness,

he is just as likely to be puzzled by
its name, and wonder what connection (if any) there is between the
statistical use of the term ”complete”, and the dictionary definition:
lacking none of the parts, whole, entire.

• Requiring g(T) to satisfy the definition puts a restriction on g. The
larger the family of pdfs/pmfs, the greater the restriction on g. When
the family of pdfs/pmfs is augmented to the point that E[g(T)] = 0
for all θ, it rules out all g except for the trivial g(T) = 0, then the
family is said to be complete.
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• Requiring g(T) to satisfy the definition puts a restriction on g. The
larger the family of pdfs/pmfs, the greater the restriction on g.

When
the family of pdfs/pmfs is augmented to the point that E[g(T)] = 0
for all θ, it rules out all g except for the trivial g(T) = 0, then the
family is said to be complete.
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. . . . .
Ancillary Statistics

. . . . . . . . . . . . . . . . . . .
Complete Statistics

.
Summary

Example - Poisson distribution

.Problem..

......

• Suppose T =
{

fT : fT(t|λ) = λte−λ

t!

}
for t ∈ {0, 1, 2, · · · }. Let

λ ∈ Ω = {1, 2}. Show that this family is NOT complete

.Proof strategy..

......

• We need to find a counter example,
• which is a function g such that E[g(T)|λ] = 0 for λ = 1, 2 but

g(T) ̸= 0.
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Ancillary Statistics

. . . . . . . . . . . . . . . . . . .
Complete Statistics

.
Summary

Poisson distribution example : Proof
The function g must satisfy

E[g(T)|λ] =
∞∑

t=0

g(t)λ
te−λ

t! = 0

for λ ∈ {1, 2}. Thus,
E[g(T)|λ = 1] =

∑∞
t=0 g(t)1te−1

t! = 0

E[g(T)|λ = 2] =
∑∞

t=0 g(t)2te−2

t! = 0

The above equation can be rewritten as
∑∞

t=0 g(t)/t! = 0∑∞
t=0 2

tg(t)/t! = 0
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.
Summary

Poisson distribution example : Proof (cont’d)
Define g(t) as

g(t) =


2 t = 0 ∨ t = 2
−3 t = 1
0 otherwise

Then

∞∑
t=0

g(t)/t! = g(0)/0! + g(1)/1! + g(2)/2! = 2− 3 + 2/2 = 0

∞∑
t=0

2tg(t)/t! = g(0)/0! + 2g(1)/1! + 22g(2)/2! = 2− 6 + 8/2 = 0

There exists a non-zero function g that satisfies E[g(T)λ] = 0 for all
λ ∈ Ω. Therefore this family is NOT complete.
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Ancillary Statistics

. . . . . . . . . . . . . . . . . . .
Complete Statistics

.
Summary

Another example with Poisson distribution

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Poisson(λ), λ > 0.

• Show that T(X) =
∑n

i=1 Xi is a complete statistic.

.Proof strategy..

......

• Need to find the distribution of T(X)

• Show that there is no non-zero function g such that E[g(T)|λ] = 0 for
all λ.
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Complete Statistics

.
Summary

Proof : Finding the moment-generating function of X

MX(s) = E[esX] =
∞∑

x=0

esx e−λλx

x!

=

∞∑
x=0

e−λ (esλ)x

x! e−esλeesλ

=
∞∑

x=0

e−λeesλ (esλ)xe−esλ

x!

= eλeesλ
∞∑

x=0

fPoisson(x|esλ)

= eλ(es−1)
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Proof : Finding the MGF of T(X) =
∑n

i=1 Xi

MT(s) = E(es
∑

Xi) =

E
( n∏

i=1

esXi

)

=

n∏
i=1

E
(
esXi

)
=
[
E
(
esXi

)]n
=

[
e−λ(es−1)

]n
= enλ(es−1)

.
Theorem 2.3.11 (b)..

......

Let FX(x) and FY(y) be two cdfs all of whose moments exists. If the
moment generating functions exists and MX(t) = MY(t) for all t in some
neighborhood of 0, then FX(u) = FY(u) for all u.

By Theorem 2.3.11, T(X) ∼ Poisson(nλ).
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Proof : Showing E[g(T)|λ] = 0 ⇐⇒ Pr[g(T) = 0] = 1

. Suppose that there exists a g(T) such that E[g(T)|λ] = 0 for all λ > 0.

E[g(T)|λ] =
∞∑

t=0

e−nλ(nλ)t

t!

= e−nλ
∞∑

t=0

g(t)(nλ)t

t! = 0

Which is equivalent to

∞∑
t=0

g(t)nt

t! λt = 0

for all λ > 0. Because the function above is a power series expansion of λ,
g(t)nt/t! = 0 for all t. and g(t) = 0 for all t. Therefore T(X) =

∑n
i=1 Xi is

a complete statistic.
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Example : Uniform Distribution

.Problem..

......
Let X1, · · · ,Xn

i.i.d.∼ Uniform(0, θ), θ > 0, Ω = (0,∞).
Show that X(n) is complete.

.Proof..

......

We need to obtain the distribution of T(X) = X(n). Let
fX(x) = 1

θ I(0 < x < θ), then its cdf is FX(x) = x
θ I(0 < x < θ) + I(x ≥ θ).

fT(t|θ) =
n!

(n − 1)!
fX(t)FX(t)n−1

=
n
θ

(
t
θ

)n−1

I(0 < t < θ) = nθ−ntn−1I(0 < t < θ)
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Proof : Uniform Distribution (cont’d)

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ > 0

E[g(T)|θ] =

∫ θ

0
g(t)nθ−ntn−1I(0 < t < θ)dt

=
n
θn

∫ θ

0
g(t)tn−1dt = 0

Taking derivative of both sides,

n
θn g(θ)θn−1 − n2

θn+1

∫ θ

0
g(t)tn−1dt = 0

ng(θ)
θ

=
n
θ

n
θn

∫ θ

0
g(t)tn−1dt = n

θ
E[g(T)|θ] = 0

Because g(T) = 0 holds for all θ > 0, T(X) = X(n) is a complete statistic.
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A simpler proof (how it was solved in the class)
Consider a function g(T) such that E[g(T)|θ] = 0 for all θ > 0

E[g(T)|θ] =

∫ θ

0
g(t)nθ−ntn−1I(0 < t < θ)dt

=
n
θn

∫ θ

0
g(t)tn−1dt = 0∫ θ

0
g(t)tn−1dt = 0

Taking derivative of both sides,

g(θ)θn−1 = 0

g(θ) = 0

for all θ > 0. Because g(T) = 0 holds for all θ > 0, T(X) = X(n) is a
complete statistic.
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Complete Statistics

.
Summary

Another Example of Uniform Distribution
.Problem..

......

• Let X1, · · · ,Xn
i.i.d.∼ Uniform(θ, θ + 1), θ ∈ R.

• We have previously shown that T(X) = (X(1),X(n)) is a minimal
sufficient statistic for θ.

• Show that T(X) is not a complete statistic.

.Proof - Using a range statistic..

......

Define R = X(n) − X(1). We have previously shown that

fR(r|θ) = n(n − 1)r(n−2)(1− r) , 0 < r < 1

Then R ∼ Beta(n − 1, 2), and E[R|θ] = n−1
n+1 .
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Proof

Define g(T(X)) = X(n) − X(1) − n−1
n+1

E[g(T)|θ] = E[X(n) − X(1)|θ]−
n − 1

n + 1

=
n − 1

n + 1
− n − 1

n + 1
= 0

Therefore, there exist a g(T) such that Pr[g(T)|θ] < 1 for all θ, so
T(X) = (X(1),X(n)) is not a complete statistic.
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Summary

Even Simpler Proof

• We know that R = X(n) − X(1) is an ancillary statistic, which do not
depend on θ.

• Define g(T) = X(n) − X(1) − E(R). Note that E(R) is constant to θ.
• Then E[g(T)|θ] = E(R)− E(R) = 0, so T is not a complete statistic.
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Complete Statistics

.
Summary

Example from Stigler (1972) Am. Stat.
.Problem..

......
Let X is a uniform random sample from {1, · · · , θ} where θ ∈ Ω = N.

Is
T(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.
Note that fX(x) = 1

θ I(x ∈ {1, · · · , θ}) = 1
θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =
θ∑

x=1

1

θ
g(x) = 1

θ

θ∑
x=1

g(x) = 0

θ∑
x=1

g(x) = 0
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Complete Statistics

.
Summary

Solution (cont’d)

for all θ ∈ N, which implies
• if θ = 1,

∑θ
x=1 g(x) = g(1) = 0

• if θ = 2,
∑θ

x=1 g(x) = g(1) + g(2) = g(2) = 0.

•
...

• if θ = k,
∑θ

x=1 g(x) = g(1) + · · ·+ g(k − 1) + g(2) = g(k) = 0.
Therefore, g(x) = 0 for all x ∈ N, and T(X) = X is a complete statistic for
θ ∈ Ω = N.
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Complete Statistics

.
Summary

Is the previous example barely complete?
.Modified Problem..

......
Let X is a uniform random sample from {1, · · · , θ} where
θ ∈ Ω = N− {n}.

Is T(X) = X a complete statistic?
.Solution..

......

Define a nonzero g(x) as follows

g(x) =


1 x = n
−1 x = n + 1
0 otherwise

E[g(T)|θ] =
1

θ

θ∑
x=1

g(x) =
{

0 θ ̸= n
1
θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− {n}, and
T(X) = X is not a complete statistic.
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Summary

.Today - Complete Statistics..

......

• Examples of complete statistics
• Two Poisson distribution examples
• Two Uniform distribution examples
• Example of barely complete statistics.

.Next Lecture..

...... • Basu’s Theorem
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