
Fall 2012 BIOSTAT 615/815 Problem Set #2
Due is Saturday October 6th, 2012 11:59PM by google document (shared to hmkang@umich.edu and atks@umich.edu)
containing the source code and answers to the questions. Also email of the compressed tar.gz file containing all the
source codes.

Problem 1. A new sorting algorithm (50 pts)
Let’s define a MySort algorithm as follows.

Data: An unsorted list A[1 · · ·n]
Result: The list A[1 · · ·n] is sorted
for i = 1 to n do

for j = i+ 1 to n do
if A[i] > A[j] then

Exchange(A[i],A[j]);
end

end
end
(a) (15pts) Prove that the MySort algorithm works correctly.
(b) (10pts) What is the time complexity of MySort algorithm? Explain briefly.
(c) (25pts) Implement a program mySort.cpp by modifying insertionSort.cpp.
In your google document, in addition to answer to (a) and (b), include full source code. Your source code file name

must be hw-2-1.cpp. Do not include any other files in your .tar.gz submission.

Problem 2 - Implementing doubly linked list (50 pts)
Implement a doubly linked list, following the skeleton below. hw-2-2.cpp is already implemented below

#include <iostream>
#include "doublyLinkedList.h"

int main(int argc, char** argv) {
std::string cmd;
int input;
doublyLinkedList<int> list;
std::cout << "Type [s/i/d] [value] : ";
while(std::cin >> cmd >> input) {

if (cmd == "s") {
std::cout << "Searching " << input << " from the list : returning " << list.search(input) << ". ";

}
else if (cmd == "i") {

std::cout << "Inserting " << input << " into the list. ";
list.insert(input);

}
else if (cmd == "d") {

std::cout << "Deleting " << input << " from the list : returning " << list.remove(input) << ". ";
}
else {

std::cerr << "ERROR: Cannot recognize the command " << cmd << std::endl;
}

std::cout << "Current list is ";
list.print();
std::cout << std::endl << std::endl << "Type [s/i/d] [value] : ";

}
return 0;

}

1

doublyLinkedList.h

#ifndef __DOUBLY_LINKED_LIST_H // This is useful to avoid redundant inclusion
#define __DOUBLY_LINKED_LIST_H // to avoid redundant inclusion

#include <iostream>
#include "doublyLinkedListNode.h"

template <class T>
class doublyLinkedList {
protected:
doublyLinkedListNode<T>* head;
doublyLinkedList(doublyLinkedList& a) {}; // prevent copying

public:
doublyLinkedList();
~doublyLinkedList();
void insert(const T& x);
bool search(const T& x);
bool remove(const T& x);
void print();

};

/**** YOU NEED TO DEFINE THE MEMBER FUNCTIONS HERE ***/

#endif

doublyLinkedListNode.h

#ifndef __DOUBLY_LINKED_LIST_NODE_H // This is useful to avoid redundant inclusion
#define __DOUBLY_LINKED_LIST_NODE_H // to avoid redundant inclusion

#include <iostream>

template <class T>
class doublyLinkedListNode {
protected:
doublyLinkedListNode<T>* prev;
T value;
doublyLinkedListNode<T>* next;

doublyLinkedListNode(doublyLinkedListNode<T>* p, const T& x, doublyLinkedListNode<T>* n);
~doublyLinkedListNode();

bool search(const T& x);
doublyLinkedListNode<T>* remove(const T& x);
void print();

template <class S> friend class doublyLinkedList;
};

/**** YOU NEED TO DEFINE THE MEMBER FUNCTIONS HERE ***/

#endif

Below is the expected output of an example run.

user@host:~/Private/biostat615/hw2$./hw-2-2
Type [s/i/d] [value] : i 1
Inserting 1 into the list. Current list is (1)

2

Type [s/i/d] [value] : i 10
Inserting 10 into the list. Current list is (10,1)

Type [s/i/d] [value] : i 2
Inserting 2 into the list. Current list is (2,10,1)

Type [s/i/d] [value] : s 10
Searching 10 from the list : returning 1. Current list is (2,10,1)

Type [s/i/d] [value] : d 10
Deleting 10 from the list : returning 1. Current list is (2,1)

Type [s/i/d] [value] : s 10
Searching 10 from the list : returning 0. Current list is (2,1)

Type [s/i/d] [value] : d 2
Deleting 2 from the list : returning 1. Current list is (1)

Type [s/i/d] [value] : d 1
Deleting 1 from the list : returning 1. Current list is (EMPTY LIST)

Note the following requirements.

• Beware of memory leak. Make sure that the number of objects created by new matches the number of deleted
objects. You may insert a small debug code to count the number of constructor and destructor calls.

• Your implementation needs to behave correctly for any input sequence.

• If your implementation is unreasonably inefficient, you may not obtain a full credit.

In your google document, include full source code (brief comments would be helpful) and an example output. Your
source code names must be hw-2-2.cpp, doublyLinkedList.h, doublyLinkedListNode.h. Do not include any other files in
your .tar.gz submission.

Problem 3 (BIOSTAT815 only) - Binary search tree with parents (50 pts)
Modify myTree.h and myTreeNode.h from lecture 7 by adding pointer to its parent node, so that myTreeNode contains a
member parent, in addition to left and right. Modify the implementations of the class accordingly. Make hw-2-3.cpp
as a copy of hw-2-2.cpp, by substituting doublyLinkedList into the modified version of myTree. The tree must behave
correctly with a reasonable efficiency.

In your google document, include full source code and an example output. Your source code names must be
hw-2-3.cpp, myTree.h, myTreeNode.h. Do not include any other files in your .tar.gz submission.

3

