Variant Calling and Filtering for SNPs

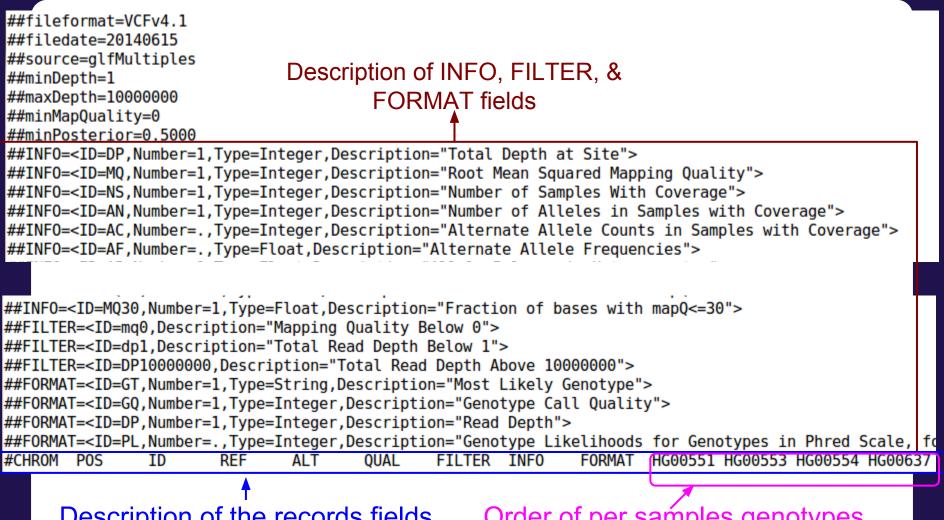
Sequence Analysis Workshop June 17, 2014

> Mary Kate Wing Hyun Min Kang Goo Jun

Goals of This Session

- Learn basics of Variant Call Format (VCF)
- Aligned sequences -> filtered snp calls
- Examine variants at particular genomic positions
- Evaluate quality of SNP calls

Variant Call Format (VCF)

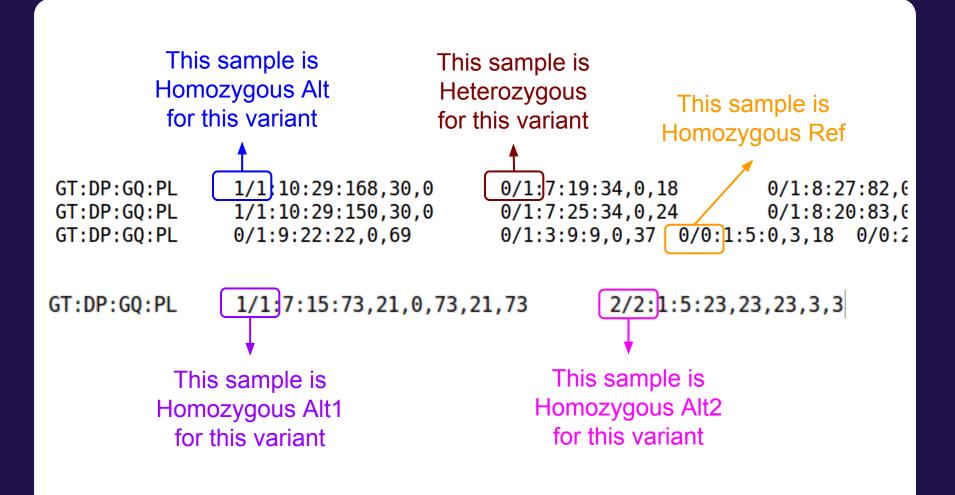

Describes variant positions

- <u>http://www.1000genomes.org/wiki/Analysis/Variant%20Call%</u>
 <u>20Format/vcf-variant-call-format-version-41</u>
- Header
 - Each line starts with #

Records

- One for each variant position
- Describes variant
- Optional per sample genotype information

Variant Call Format: Header


Description of the records fields

Order of per samples genotypes

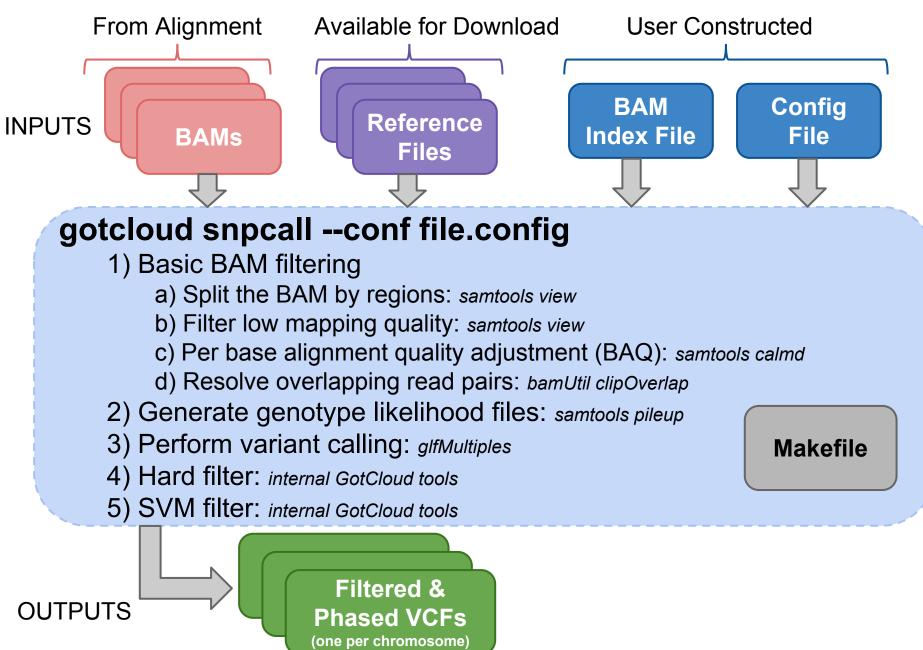
Variant Call Format: Records

Variant Call Format: Records

Variant Call Format (VCF)

- It's a large file, how do I look at certain variants?
 - tabix
 - http://samtools.sourceforge.net/tabix.shtml
 - Generate tabix index (.tbi) file:
 - tabix -p vcf file.vcf.gz
 - View region:
 - tabix file.vcf.gz CHR:START-END

Why GotCloud snpcall?


Same reasons as GotCloud align

- All-in-one package for snp calling pipeline
 - You don't have to know the details of individual steps
 - Automates steps for you
- Robust parallelization
 - Automatically partitions chromosomes by regions
 - Takes advantage of clusters
 - Supports MOSIX, slurm, SGE, pbs (flux)
 - Can setup a cluster on Amazon
 - via GNU make
 - Reliable and fault-tolerant
 - Restart where it stopped upon unexpected crash

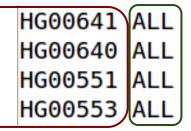
Why GotCloud snpcall?

- Analyzes many samples together
- Easy to add new samples to your study

GotCloud SnpCall Pipeline Overview

Reference Files

- GotCloud snpcall uses:
 - Reference genome FASTA file
 - To identify differences (SNPs) between bases in sequence reads & the reference positions they mapped
- VCF files
 - indel contains known insertions & deletions to help with filtering
 - omni used as likely true positives for SVM filtering
 - hapmap used as likely true positives for SVM filtering and for generating summary statistics
 - dbsnp used for generating summary statistics

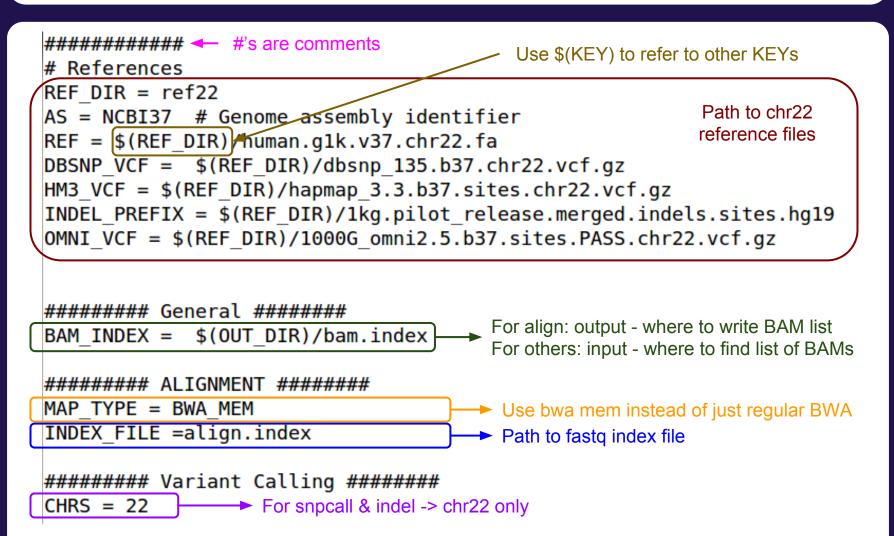

User Constructed Input: BAM Index File

Points GotCloud to the BAMs

- Alignment pipeline generates for you
- For our tutorial: update it to include more BAMs

Tab delimited

1) Sample name one row per sample



3.. N) BAM - typically only 1 BAM for sample, but if more than one, separate with tabs

/home/mktrost/out/bams/HG00641.recal.bam
/home/mktrost/out/bams/HG00640.recal.bam
/home/mktrost/out/bams/HG00551.recal.bam
/home/mktrost/out/bams/HG00553.recal.bam

2) Population : alignment pipeline puts "ALL", which is fine.

User Constructed Input: GotCloud Configuration

User Constructed Input: GotCloud Configuration

GENOMESTRIP OUT = (OUT DIR)/sv

 Structural Variation Pipeline Settings

GENOMESTRIP_SVTOOLKIT_DIR = svtoolkit GENOMESTRIP_MASK_FASTA = \$(GENOMESTRIP_SVTOOLKIT_DIR)/ref/human_glk_v37.chr22.mask.100.fasta GENOMESTRIP_PLOIDY_MAP = \$(GENOMESTRIP_SVTOOLKIT_DIR)/conf/humgen_glk_v37_ploidy.chr22.map GENOMESTRIP_PARAM = \$(GENOMESTRIP_SVTOOLKIT_DIR)/conf/genstrip_parameters.txt

What will I need to configure in GotCloud for my own research?

• Exome/Targeted set in your configuration:

```
# Write loci file when performing pileup
WRITE_TARGET_LOCI = TRUE
```

```
# Directory to store target information
TARGET_DIR = target
```

```
# When all individuals has the same target
UNIFORM_TARGET_BED = path/to/file.bed
```

```
# When each individual has different targets
# Each line of file.txt contains [SM_ID] [TARGET_BED]
MULTIPLE_TARGET_MAP = path/to/file.txt
```

```
# Extend target by given # of bases
# Set this to what you want or to 0
OFFSET_OFF_TARGET = 50
```

```
# If a single chromosome is too small for SVM,
# set this to run SVM on all chromosomes combined
# Only for very small targetted projects
# Exome does not require this
#WGS_SVM = TRUE
```

What will I need to configure in GotCloud for my own research?

• Cluster support

- Via configuration
 - BATCH_TYPE =
 - mosix, pbs, slurm, pbs, sge, slurmi, sgei
 - BATCH_OPTS =
 - Set to any options you would normally pass to your cluster
- Via command line
 - --batchtype & --batchopts

How good are the results?

\${OUT}/vcfs/chr*/chr*.filtered.sites.vcf.summary

FILTER	#SNPs	#dbSNP	%dbSNP	%CpG Known	%CpG Novel	%Known Ts∕Tv	%Novel Ts/Tv	%nCpG-K Ts/Tv	%nCpG-N Ts/Tv	%HM3 sens	%HM3 /SNP
INDEL5	56	50	89.3	10.0	0.0	1.78	1.00	1.50	1.00	0.005	1.786
INDEL5;SVM	9	9	100.0	0.0	NA	0.80	NA	0.80	NA	0.000	0.000
PASS	3870	3741	96.7	21.9	17.1	2.36	2.23	1.94	1.82	2.325	12.403
SVM	129	112	86.8	16.1	17.6	3.31	1.83	2.92	1.80	0.000	0.000
FILTER	#SNPs	#dbSNP	%dbSNP	%CpG Known	%CpG Novel	%Known Ts/Tv	%Novel Ts/Tv	%nCpG-K Ts/Tv	%nCpG-N Ts/Tv	%HM3 sens	%HM3 /SNP
INDEL5	65	59	90.8	8.5	0.0	1.57	1.00	1.35	1.00	0.005	1.538
PASS	3870	3741	96.7	21.9	17.1	2.36	2.23	1.94	1.82	2.325	12.403
SVM	138	121	87.7	14.9	17.6	2.90	1.83	2.55	1.80	0.000	0.000
PASS	3870	3741	96.7	21.9	17.1	2.36	2.23	1.94	1.82	2.325	12.403
FAIL	194	171	88.1	13.5	13.0	2.49	1.56	2.15	1.50	0.005	0.515
TOTAL	4064	3912	96.3	21.5	16.4	2.37	2.10	1.95	1.76	2.330	11.836
MultiAllele Ref/Alt Repeated Positions TOTAL SKIPPED	1 0 1										

Genotype Refinement

• After snpcall, we run genotype refinement

- improves the genotypes higher quality
- Beagle & thunder
- Outputs are VCFs
 - thunder breaks up by population

Try it yourself

http://genome.sph.umich.edu/wiki/SeqShop: _Variant_Calling_and_Filtering_for_SNPs_Pract ical