
Copy Number Variation
Methods and Data



Copy number variation (CNV)

ACCTGCAATGAT TTGCAACGTTAGGCATAAGCCCGGG

Reference Sequence

Population

ACCTGCAATGAT TTGCAACGTTAGGCATAAGCCCGGG

ACCTGCAATGAT TTGCAACGTTAGGCA

ACCTGCAATGAT TTGCAACGTTAGGCATAAGCCCGGGACCTGCAATGAT

Copy number variations (CNVs) are regions >1kb in  a 
genome that occur in different copy number in a 
population. 



CNVs in Cancer Cells
• Development of solid tumors is associated with 

acquisition of complex genetic alterations. 

• These alterations can be of any length, including full 
chromosomes.

• Changes can be caused by underlying failures in 
maintenance of genetic stability, 

• Canges may be promoted by positive selection as they 
provide growth advantages. 

• Regions commonly amplified may contain genes that 
improve the viability and growth of the tumor cells.



CNVs in populations
• CNVs ranging from 1kb - several Mb segregate in humans 

and model organisms.

• Median length of known CNVs is ~100kb,  but that number is 
shaky.

• CNVs often have limited phenotypic impact

• CNV-alleles are inherited in the germline. 

• >10% of the human genome has variable copy number.

• The genome of two individuals has an average difference in 
length of  ~10 Mb. 

• CNVs cover genes (Redon et al(06): 2900 genes are covered 
by CNVs)



More CNV facts
• Most CNVs are singletons
• In most genomic regions, CNV-mutations are rare.
• CNVs are usually in high LD with SNPs.
• 25-fold enrichment near segmental duplications.
• CNVs are generated by several types of events, 

e.g. non-allelic homologous recombination and 
retrotransposition.

• More detected CNVs are duplications, but it is not 
clear if this is detection bias.



CNVs are distributed throughout 
the  Genome



CNVs and diseases

• Aids: CNV covering CCL3L1, large copy number is protective 
of  HIV/AIDS infection.

• Association with Crohn’s disease and BMI.

• Autism: De novo deletions more common in patients with 
Autism.

• New Syndrome: Deletion on chromosome 17 defines novel 
genetic disorder.



How to find CNVs?
Non-Mendelian Inheritance



Feuk et al. Nature Reviews Genetics 7, 85–97 (February 2006) 

How to find CNVs?
Competitive Genomic Hybridisation
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How to find CNVs?
SNP assays



How to find CNVs?
Paired end resequencing



Method Matters



Challenges of the data analysis

• The signal is noisy, hybridization intensities depend on 
many environmental factors.

• In population samples, probes covering CNVs are rare, 
about 1% of all probes cover the rare allele of a CNV.

• The state space is not well-defined. Especially in 
cancer, we may observe a large amplification in copy 
number.



2 Algorithms

• CBS -Circular Binary Segmentation

• HMM - Hidden Markov Model

Basic idea: Consecutive probes are likely to 
have the same copy number, thus the data 
is locally correlated. 



Circularly Binary Segmentation

• Ohlsen et al. Biostatistics (2004), 5, 4, pp. 
557–572

• Method to analyze CGH data.
• Designed for Cancer cell analysis-needs to 

model complex changes in copy number. 
• Implemented in the program DNAcopy, which 

is widely used. 
• Has a nice visual output.



Change point method

Definition: Let X1, X2, . . .Xn be a sequence of random 
variables. An index ν is called a change-point if X1, . 
. . , Xν have a common distribution function F0 and 
Xν+1, . . . have a different common distribution 
function F1 until the next change-point (if one exists).

Here, a change points represent the change in copy 
number along the genome.



Testing for the existence of change 
points

Let Si = X1 + ·· ·+ Xi , 1  i n, be the partial sums. 
When the data are normally distributed with a known variance 2, the 
statistic for testing the null hypothesis of no change against the 
alternative of exactly one change at an unknown location i is given by 

ZB = max1i<n |Zi |, 
where Zi is a t-statistic for unequal sample sizes

i and n-i are estimates of the variance from data points 1,…,i and 
i+1,…,n. 
Critical values for this test can be derived by Monte Carlo simulation. 
The location of the change-point is estimated to be i such that ZB = |Zi |.
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Finding more change points
• Assume v is a changepoint.

• To identify additional change points, run the test on 
X1,…,Xv and on Xv+1,…,Xn. 

• Repeated recursively until no further change point can 
be detected.

• This algorithm does result in a multiple testing problem 
as the probability of finding spurious change-points is a 
function of the number of true change-points. Since the 
true number of change-points is unknown no correction 
is performed.



However…
Since the binary segmentation procedure is based 
on a test to detect a single change, a potential 
problem with it is that it cannot detect a small 
changed segment buried in the middle of a large 
segment. This problem with the binary 
segmentation procedure is due to the fact that it 
looks for only one change-point at a time.

Segment 1 Segment 2



Circulary Binary Segmentation

3 segments

2segments



Circular binary segmentation
• The test statistic is then ZC = max1i<jn |Zij| with 

• Note that ZC allows for both a single change( j = n) and 
two changes ( j < n).

• Once the null hypothesis is rejected the change-point(s) 
is (are) estimated to be i (and j ) such that ZC = |Zij|

• Multiple pairs of change points can be detected with the 
same recursive algorithm described before.
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Application to data



HMM

• Fridlyand et al. Journal of Multivariate 
Analysis 90 (2004) 132–153

Goals:
• Identify the number of states present in the 

data.
• Estimate the state at each probe sl.



Markov Chain

• Markov Chains are statistical 
processes where each next 
state only depends on the 
present state.

• In a hidden Markov model, 
the actual states are 
unobserved, we only get 
indirect signals.



Markov Chain

• Markov Chains are statistical 
processes where each next 
state only depends on the 
present state.

• In a hidden Markov model, 
the actual states are 
unobserved, we only get 
indirect signals.



CNVs as HMM

0        0         1       1         1        0            2     2           0      0

Probes covering a CNV are locally correlated, a probe in a 
CNV is more likely to be next to an other probe in a CNV.



HMM
A HMM with the fixed number of hidden states K can be characterized 
in terms of three parameters: 

(i) the initial state probabilities, ; 

(ii) the transition probability matrix, A

(iii) the collection of Gaussian emission probability functions defined 
within each state, B. 

For HMMs, there are efficient EM-based algorithms to create maximum 
likelihood estimates of A, B and .

Based on A, B and , ML- estimates for copy number status at each 
position are generated.



HMM for CNVs
• Emission distributions are generally generated from outside 

information.
• Genotype information can be analyzed as orthologous signal.
• Transition matrix provides prior frequency of CNVs and prior length 

distribution.



Comparing the methods
• Simulation study by taking hybridization intensities from 

a primary breast tumor sample, assigning the “true” CNV 
status dependent on the  mean signal. 

• CNV lengths followed the distribution of stretches of high 
and low signal in the data.

• Gaussian noise was added.

• For each simulated dataset, breakpoints were estimated 
using three methods, DNAcopy, HMM and Glad.

• Successive CNVs were merged.



Comparison of Methods

• HMM had the greatest power to detect the shortest segments 
• DNAcopy surpassing HMM for longer segments. 
• DNAcopy had by far the lowest FDR for all segment lengths.



Comparing tagSNPs and calling 
methods

P(O|A) (false 
positive rate)

P(O|C) 
(sensitivity)

P(C) (freq. of minor CNV allele)

0.02 0.05 0.1 0.2

IF r2 IF r2 IF r2 IF r2

0.01

0.9 1.74 0.57 1.37 0.73 1.25 0.80 1.20 0.83

0.8 2.05 0.49 1.59 0.63 1.44 0.69 1.40 0.71

0.7 2.49 0.40 1.88 0.53 1.70 0.59 1.66 0.60

0.05

0.9 4.41 0.23 2.45 0.41 1.80 0.56 1.48 0.67

0.8 5.51 0.18 2.99 0.33 2.16 0.46 1.78 0.56

0.7 7.13 0.14 3.77 0.27 2.68 0.37 2.18 0.46

IF - Inflation factor to overcome calling error.


