Biostatistics 602 - Statistical Inference Lecture 06 Basu's Theorem

Hyun Min Kang

January 29th, 2013

3 1 4 3

< A > <

Complete Statistics •000000000	Basu's Theorem 00000000	
Last Lecture		

1 What is a complete statistic?

< 一型

э

Complete Statistics •000000000	Basu's Theorem 00000000	

Last Lecture

- 1 What is a complete statistic?
- 2 Why it is called as "complete statistic"?

- What is a complete statistic?
- 2 Why it is called as "complete statistic"?
- 3 Can the same statistic be both complete and incomplete statistics, depending on the parameter space?

글 노 김 글

< 1 k

Last Lecture

- What is a complete statistic?
- 2 Why it is called as "complete statistic"?
- 3 Can the same statistic be both complete and incomplete statistics, depending on the parameter space?
- What is the relationship between complete and sufficient statistics?

E 6 4

Last Lecture

- What is a complete statistic?
- 2 Why it is called as "complete statistic"?
- 3 Can the same statistic be both complete and incomplete statistics, depending on the parameter space?
- What is the relationship between complete and sufficient statistics?
- **5** Is a minimal sufficient statistic always complete?

Complete Statistics	
000000000	

Definition

• Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.

э

A (10) < A (10) < A (10) </p>

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called *complete* if

▲ □ ▶ ▲ □ ▶ ▲ □

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called *complete* if
- $E[g(T)|\theta] = 0$ for all θ implies $\Pr[g(T) = 0|\theta] = 1$ for all θ .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called *complete* if
- $E[g(T)|\theta] = 0$ for all θ implies $\Pr[g(T) = 0|\theta] = 1$ for all θ .
 - In other words, g(T) = 0 almost surely.

< 回 > < 三 > < 三

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called *complete* if
- $E[g(T)|\theta] = 0$ for all θ implies $\Pr[g(T) = 0|\theta] = 1$ for all θ .
 - In other words, g(T) = 0 almost surely.
- Equivalently, $T(\mathbf{X})$ is called a *complete statistic*

A (10) A (10) A (10)

Example - Poisson distribution

When parameter space is limited - NOT complete

• Suppose
$$\mathcal{T} = \left\{ f_T : f_T(t|\lambda) = \frac{\lambda^t e^{-\lambda}}{t!} \right\}$$
 for $t \in \{0, 1, 2, \cdots\}$. Let $\lambda \in \Omega = \{1, 2\}$. This family is NOT complete

< A > <

Example - Poisson distribution

When parameter space is limited - NOT complete

• Suppose
$$\mathcal{T} = \left\{ f_T : f_T(t|\lambda) = \frac{\lambda^t e^{-\lambda}}{t!} \right\}$$
 for $t \in \{0, 1, 2, \cdots\}$. Let $\lambda \in \Omega = \{1, 2\}$. This family is NOT complete

With full parameter space - complete

•
$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda), \lambda > 0.$$

•
$$T(\mathbf{X}) = \sum_{i=1}^{n} X_i$$
 is a complete statistic.

Complete Statistics	
00000000	

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$.

Complete Statistics	Basu's Theorem
00000000	00000000

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Solution

Consider a function g(T) such that $E[g(T)|\theta] = 0$ for all $\theta \in \mathbb{N}$. Note that $f_X(x) = \frac{1}{\theta}I(x \in \{1, \cdots, \theta\}) = \frac{1}{\theta}I_{\mathbb{N}_{\theta}}(x)$.

< 1 k

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Solution

Consider a function g(T) such that $E[g(T)|\theta] = 0$ for all $\theta \in \mathbb{N}$. Note that $f_X(x) = \frac{1}{\theta}I(x \in \{1, \cdots, \theta\}) = \frac{1}{\theta}I_{\mathbb{N}_{\theta}}(x)$.

$$E[g(T)|\theta] = E[g(X)|\theta] = \sum_{x=1}^{\theta} \frac{1}{\theta}g(x) = \frac{1}{\theta}\sum_{x=1}^{\theta}g(x) = 0$$

< 4 ₽ >

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Solution

Consider a function g(T) such that $E[g(T)|\theta] = 0$ for all $\theta \in \mathbb{N}$. Note that $f_X(x) = \frac{1}{\theta}I(x \in \{1, \cdots, \theta\}) = \frac{1}{\theta}I_{\mathbb{N}_{\theta}}(x)$.

$$E[g(T)|\theta] = E[g(X)|\theta] = \sum_{x=1}^{\theta} \frac{1}{\theta}g(x) = \frac{1}{\theta}\sum_{x=1}^{\theta}g(x) = 0$$
$$\sum_{x=1}^{\theta}g(x) = 0$$

< 1 k

Complete Statistics 0000●00000	Basu's Theorem 00000000	

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

< 4[™] ►

э

Complete Statistics	Basu's Theorem	
00000000		

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

• if
$$\theta = 2$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + g(2) = g(2) = 0$.

< 1 k

Complete Statistics	Basu's Theorem	
00000000		

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

• if
$$\theta = 2$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + g(2) = g(2) = 0$.

• if
$$\theta = k$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + \dots + g(k-1) = g(k) = 0$.

< 1 k

Complete Statistics	Basu's Theorem	
00000000		

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$
• if $\theta = 2$, $\sum_{x=1}^{\theta} g(x) = g(1) + g(2) = g(2) = 0$.
• \vdots

• if
$$\theta = k$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + \dots + g(k-1) = g(k) = 0$.

Therefore, g(x) = 0 for all $x \in \mathbb{N}$, and T(X) = X is a complete statistic for $\theta \in \Omega = \mathbb{N}$.

Complete Statistics	Basu's Theorem 000000000	

Modified Problem

Let X is a uniform random sample from $\{1, \cdots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}.$

Complete Statistics	Basu's Theorem 000000000	

Modified Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Modified Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Solution

Define a nonzero g(x) as follows

$$g(x) = \begin{cases} 1 & x = n \\ -1 & x = n+1 \\ 0 & \text{otherwise} \end{cases}$$

Modified Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Solution

Define a nonzero g(x) as follows

$$g(x) = \begin{cases} 1 & x = n \\ -1 & x = n+1 \\ 0 & \text{otherwise} \end{cases}$$
$$E[g(T)|\theta] = \frac{1}{\theta} \sum_{x=1}^{\theta} g(x) = \begin{cases} 0 & \theta \neq n \\ \frac{1}{\theta} & \theta = n \end{cases}$$

Modified Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Solution

Define a nonzero q(x) as follows

$$g(x) = \begin{cases} 1 & x = n \\ -1 & x = n+1 \\ 0 & \text{otherwise} \end{cases}$$
$$E[g(T)|\theta] = \frac{1}{\theta} \sum_{x=1}^{\theta} g(x) = \begin{cases} 0 & \theta \neq n \\ \frac{1}{\theta} & \theta = n \end{cases}$$

Because Ω does not include n, g(x) = 0 for all $\theta \in \Omega = \mathbb{N} - \{n\}$, and T(X) = X is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07

Summary

Last Lecture : Ancillary and Complete Statistics

Problem

- Let $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}.$
- Is T(X) = (X₍₁₎, X_(n)) a complete statistic?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Last Lecture : Ancillary and Complete Statistics

Problem

- Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}.$
- Is T(X) = (X₍₁₎, X_(n)) a complete statistic?

A Simple Proof

- We know that $R=X_{(n)}-X_{(1)}$ is an ancillary statistic, which do not depend on $\theta.$

< 日 > < 同 > < 三 > < 三 >

Last Lecture : Ancillary and Complete Statistics

Problem

- Let $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}.$
- Is $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ a complete statistic?

A Simple Proof

- We know that $R=X_{(n)}-X_{(1)}$ is an ancillary statistic, which do not depend on $\theta.$
- Define $g(\mathbf{T}) = X_{(n)} X_{(1)} E(R)$. Note that E(R) is constant to θ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Last Lecture : Ancillary and Complete Statistics

Problem

- Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}.$
- Is T(X) = (X₍₁₎, X_(n)) a complete statistic?

A Simple Proof

- We know that $R=X_{(n)}-X_{(1)}$ is an ancillary statistic, which do not depend on $\theta.$
- Define $g(\mathbf{T}) = X_{(n)} X_{(1)} E(R)$. Note that E(R) is constant to θ .
- Then $E[g(\mathbf{T})|\theta] = E(R) E(R) = 0$, so T is not a complete statistic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Useful Fact 1 : Ancillary and Complete Statistics

Fact

For a statistic $T(\mathbf{X})$, If a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete

▲ □ ▶ ▲ 三 ▶ ▲ 三

Useful Fact 1 : Ancillary and Complete Statistics

Fact

For a statistic $T(\mathbf{X})$, If a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete

Proof

Define g(T) = r(T) - E[r(T)], which does not depend on the parameter θ because r(T) is ancillary.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Useful Fact 1 : Ancillary and Complete Statistics

Fact

For a statistic $T(\mathbf{X})$, If a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete

Proof

Define g(T) = r(T) - E[r(T)], which does not depend on the parameter θ because r(T) is ancillary. Then $E[g(T)|\theta] = 0$ for a non-zero function g(T), and $T(\mathbf{X})$ is not a complete statistic.

(4) (日本)

Complete Statistics	Basu's Theorem	
0000000000		

Useful Fact 2 : Arbitrary Function of Complete Statistics

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Useful Fact 2 : Arbitrary Function of Complete Statistics

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$

э

< 日 > < 同 > < 三 > < 三 >

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta] = 0$ for all θ ,

э

< ロ > < 同 > < 回 > < 回 > < 回 >

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta] = 0$ for all θ , then $E[g \circ r(T)|\theta] = 0$ holds for all θ too.

3

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta] = 0$ for all θ , then $E[g \circ r(T)|\theta] = 0$ holds for all θ too. Because $T(\mathbf{X})$ is a complete statistic,

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta] = 0$ for all θ , then $E[g \circ r(T)|\theta] = 0$ holds for all θ too. Because $T(\mathbf{X})$ is a complete statistic, $\Pr[g \circ r(T) = 0] = 1$, $\forall \theta \in \Omega$. Therefore $\Pr[g(T^*) = 0] = 1$, and T^* is a complete statistic.

3

Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

글 🕨 🖌 글

Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic

Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic

The converse is NOT true

A minimal sufficient statistic is not necessarily complete. (Recall the example in the last lecture).

- 4 間 ト - 4 三 ト - 4 三 ト

Complete Statistics 000000000	Basu's Theorem ●00000000	

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Complete Statistics	Basu's Theorem	
	0000000	

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Proof strategy - for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}$$

Complete Statistics	Basu's Theorem	Summary
	•0000000	

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Proof strategy - for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}$$

Alternatively, we can show that

$$\Pr(T(\mathbf{X}) = t | S(\mathbf{X}) = s) = \Pr(T(\mathbf{X}) = t)$$

Complete Statistics	Basu's Theorem	
	•0000000	

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Proof strategy - for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}$$

Alternatively, we can show that

$$\Pr(T(\mathbf{X}) = t | S(\mathbf{X}) = s) = \Pr(T(\mathbf{X}) = t)$$

$$\Pr(T(\mathbf{X}) = t \land S(\mathbf{X}) = s) = \Pr(T(\mathbf{X}) = t) \Pr(S(\mathbf{X}) = s)$$

• As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .

-

< 4[™] ▶

- As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .
- As $T(\mathbf{X})$ is sufficient, by definition, $f_{\mathbf{X}}(\mathbf{X}|T(\mathbf{X}))$ is independent of θ .

14 IN 14 14 14

< A >

- As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .
- As $T(\mathbf{X})$ is sufficient, by definition, $f_{\mathbf{X}}(\mathbf{X}|T(\mathbf{X}))$ is independent of θ .
- Because $S(\mathbf{X})$ is a function of \mathbf{X} , $\Pr(S(\mathbf{X})|T(\mathbf{X}))$ is also independent of θ .

골 동 김 골

4 A b 4

- As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .
- As $T(\mathbf{X})$ is sufficient, by definition, $f_{\mathbf{X}}(\mathbf{X}|T(\mathbf{X}))$ is independent of θ .
- Because $S(\mathbf{X})$ is a function of \mathbf{X} , $\Pr(S(\mathbf{X})|T(\mathbf{X}))$ is also independent of θ .
- We need to show that $\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}.$

4 A N 4 E N 4 E

Complete Statistics	Basu's Theorem	
	0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta)$$
(1)

Complete Statistics	Basu's Theorem	
	0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta)$$
(1)
$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta)$$
(2)

Complete Statistics	Basu's Theorem	
	0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta) \quad (1)$$

$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta) \quad (2)$$

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t|\theta)$$

Complete Statistics	Basu's Theorem	
	0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta) \quad (1)$$

$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta) \quad (2)$$

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t|\theta) \quad (3)$$

Define $g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s).$

3

3 × < 3 ×

< 17 > <

	Summary
000000000 00000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta)$$
(1)

$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta)$$
(2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t|\theta)$$
(3)

Define $g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

3

00000000 0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta)$$
(1)

$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta)$$
(2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
(3)

Define $g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

3

000000000 000000 0	Complete Statistics	Basu's Theorem	
	000000000	0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta)$$
(1)

$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta)$$
(2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
(3)

Define $g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

 $T(\mathbf{X})$ is complete, so g(t) = 0 almost surely for all possible $t \in \mathcal{T}$.

00000000 00000 0	Complete Statistics	Basu's Theorem	
	000000000	0000000	

$$\Pr(S(\mathbf{X}) = s|\theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s|T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t|\theta)$$
(1)

$$\Pr(S(\mathbf{X}) = s|\theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t|\theta)$$
(2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t|\theta)$$
(3)

Define $g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

 $T(\mathbf{X})$ is complete, so g(t) = 0 almost surely for all possible $t \in \mathcal{T}$. Therefore, $S(\mathbf{X})$ is independent of $T(\mathbf{X})$.

Hyun Min Kang

January 29th, 2013 14 / 21

Complete Statistics Basu's Theore	em Summary	
00000000 0000000		

Problem

•
$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$$

Complete Statistics	Basu's Theorem	Summary
000000000	00000000	

Problem

•
$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$$

- Calculate $E\left[rac{X_{(1)}}{X_{(n)}}
ight]$ and $E\left[rac{X_{(1)}+X_{(2)}}{X_{(n)}}
ight]$

э

Complete Statistics	Basu's Theorem	
000000000	00000000	

Problem

•
$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$$

• Calculate
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right]$$
 and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

• We know that $X_{(n)}$ is sufficient statistic.

Problem

•
$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$$

• Calculate
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right]$$
 and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

- We know that $X_{(n)}$ is sufficient statistic.
- We know that $X_{(n)}$ is complete, too.

Problem

•
$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$$

• Calculate
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right]$$
 and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

- We know that $X_{(n)}$ is sufficient statistic.
- We know that X_(n) is complete, too.
- We can easily show that $X_{(1)}/X_{(n)}$ is an ancillary statistic.

Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$
- Calculate $E\left[\frac{X_{(1)}}{X_{(n)}}\right]$ and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

- We know that $X_{(n)}$ is sufficient statistic.
- We know that $X_{(n)}$ is complete, too.
- We can easily show that $X_{(1)}/X_{(n)}$ is an ancillary statistic.
- Then we can leverage Basu's Theorem for the calculation.

Complete Statistics	Basu's Theorem	Summary
00000000	00000000	

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Complete Statistics	Basu's Theorem	
000000000	00000000	

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

э

Complete Statistics	Basu's Theorem
00000000	0000000

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

$$f_Y(y|\theta) = I(0 < y < 1)$$

Complete Statistics	Basu's Theorem
	00000000

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

$$\begin{array}{rcl} f_Y(y|\theta) &=& I(0 < y < 1) \\ \\ \frac{X_{(1)}}{X_{(n)}} &=& \frac{Y_{(1)}}{Y_{(n)}} \end{array}$$

э

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

$$\begin{array}{rcl} f_Y(y|\theta) &=& I(0 < y < 1) \\ \\ \frac{X_{(1)}}{X_{(n)}} &=& \frac{Y_{(1)}}{Y_{(n)}} \end{array}$$

Because the distribution of Y_1, \dots, Y_n does not depend on θ , $X_{(1)}/X_{(n)}$ is an ancillary statistic for θ .

3

Applying Basu's Theorem

• By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Applying Basu's Theorem

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

э

∃ ► < ∃ ►</p>

< 4 ₽ × <

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right]$$

э

∃ ► < ∃ ►</p>

< 4 ₽ × <

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right]E\left[X_{(n)}\right]$$

э

∃ ► < ∃ ►</p>

< 4 ₽ × <

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right]E\left[X_{(n)}\right]$$
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right]$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right]E\left[X_{(n)}\right]$$
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[X_{(1)}]}{E[X_{(n)}]}$$

э

∃ ► < ∃ ►</p>

< 4 ₽ × <

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right] E\left[X_{(n)}\right]$$
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[X_{(1)}]}{E[X_{(n)}]}$$
$$= \frac{E[\theta Y_{(1)}]}{E[\theta Y_{(n)}]}$$

э

∃ ► < ∃ ►</p>

< 4 ₽ × <

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right] E\left[X_{(n)}\right]$$
$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[X_{(1)}]}{E[X_{(n)}]}$$
$$= \frac{E[\theta Y_{(1)}]}{E[\theta Y_{(n)}]}$$
$$= \frac{E[Y_{(1)}]}{E[Y_{(n)}]}$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

Complete Statistics 000000000	Basu's Theorem oooooo●oo	
Obtaining $E[Y_{(1)}]$		

$Y \sim \text{Uniform}(0,1)$

3

<ロト <問ト < 目と < 目と

Complete Statistics 000000000	Basu's Theorem oooooo●oo	
Obtaining $E[Y_{(1)}]$		

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$

▲口▶▲圖▶▲圖▶▲圖▶ ■ の文令

Complete Statistics 000000000	Basu's Theorem oooooo●oo	
Obtaining $E[Y_{(1)}]$		

$$\begin{array}{rcl} Y & \sim & {\rm Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \end{array}$$

Complete Statistics 000000000	Basu's Theorem 000000●00	

Obtaining $E[Y_{(1)}]$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} I(0 < y < 1) \end{array}$$

• • • • • • • •

Complete Statistics 000000000	Basu's Theorem 000000●00	

Obtaining
$$E[Y_{(1)}]$$

$$Y \sim \text{Uniform}(0, 1)$$

$$f_Y(y) = I(0 < y < 1)$$

$$F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$$

$$f_{Y_{(1)}}(y) = \frac{n!}{(n-1)!} f_Y(y) [1 - F_Y(y)]^{n-1} I(0 < y < 1)$$

$$= n(1-y)^{n-1} I(0 < y < 1)$$

▲口 ▶ ▲圖 ▶ ▲圖 ▶ ▲圖 ▶ ▲ 圖 ● 今 Q @ ▶

Complete Statistics 000000000	Basu's Theorem 000000●00	

Obtaining $\overline{E[Y_{(1)}]}$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} I(0 < y < 1) \\ & = & n(1-y)^{n-1} I(0 < y < 1) \\ Y_{(1)} & \sim & \mathrm{Beta}(1,n) \end{array}$$

イロト イヨト イヨト イヨト

Obtaining
$$E[Y_{(1)}]$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} I(0 < y < 1) \\ & = & n(1-y)^{n-1} I(0 < y < 1) \\ Y_{(1)} & \sim & \mathrm{Beta}(1,n) \\ E[Y_{(1)}] & = & \frac{1}{n+1} \end{array}$$

= 990

イロト イヨト イヨト イヨト

Complete Statistics 0000000000	Basu's Theorem 0000000●0	
Obtaining $E[Y_{(n)}]$		

$Y \sim \text{Uniform}(0,1)$

3

イロト イヨト イヨト イヨト

Complete Statistics	Basu's Theorem ooooooo●o	
Obtaining $E[Y_{(n)}]$		

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$

▲口▶▲圖▶▲圖▶▲圖▶ ■ の文令

Complete Statistics 0000000000	Basu's Theorem oooooooooo	
Obtaining $E[Y_{(n)}]$		

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$

Complete Statistics 000000000	Basu's Theorem 0000000●0	
Obtaining $E[Y_{(n)}]$		

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(n)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[F_Y(y) \right]^{n-1} I(0 < y < 1) \end{array}$$

イロト イヨト イヨト イヨト

Complete Statistics 000000000	Basu's Theorem 0000000●0	
Obtaining $E[Y_{(n)}]$		

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(n)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[F_Y(y) \right]^{n-1} I(0 < y < 1) \\ & = & ny^{n-1} I(0 < y < 1) \end{array}$$

Ξ.

<ロト <問ト < 目と < 目と

Complete Statistics	Basu's Theorem 0000000●0	
<u></u>		

Obtaining
$$\mathit{E}[\mathit{Y}_{(n)}]$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(n)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[F_Y(y) \right]^{n-1} I(0 < y < 1) \\ & = & ny^{n-1} I(0 < y < 1) \\ Y_{(n)} & \sim & \mathrm{Beta}(n,1) \end{array}$$

Complete Statistics	Basu's Theorem 0000000●0	
<u></u>		

Obtaining
$$E[Y_{(n)}]$$

$$Y \sim \text{Uniform}(0, 1)$$

$$f_Y(y) = I(0 < y < 1)$$

$$F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$$

$$f_{Y_{(n)}}(y) = \frac{n!}{(n-1)!} f_Y(y) [F_Y(y)]^{n-1} I(0 < y < 1)$$

$$= ny^{n-1} I(0 < y < 1)$$

$$Y_{(n)} \sim \text{Beta}(n, 1)$$

$$E[Y_{(n)}] = \frac{n}{n+1}$$

$$E[Y_{(n)}] = \frac{I}{n+1}$$

Therefore, $E\left\lfloor \frac{X_{(1)}}{X_{(n)}} \right\rfloor = \frac{E[Y_{(1)}]}{E[Y_{(n)}]} = \frac{1}{n}$

イロト イポト イヨト イヨト

Complete Statistics 000000000	Basu's Theorem 00000000●	
Obtaining $E[Y_{(2)}]$		

$Y \sim \text{Uniform}(0,1)$

3

イロト イヨト イヨト イヨト

Complete Statistics 000000000	Basu's Theorem 0000000●	
Obtaining $E[Y_{(2)}]$		

$$\begin{array}{lll} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \end{array}$$

Complete Statistics 000000000	Basu's Theorem 00000000●	
Obtaining $E[Y_{(2)}]$		

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$

Complete Statistics	Basu's Theorem 00000000●	
	TZ 1	

Obtaining
$$E[Y_{(2)}]$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \end{array}$$

Complete Statistics 000000000	Basu's Theorem 00000000●	
Obtaining $E[Y_{(2)}]$		

$$\begin{array}{rcl} Y &\sim & \mathrm{Uniform}(0,1) \\ f_Y(y) &= & I(0 < y < 1) \\ F_Y(y) &= & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) &= & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ &= & n(n-1)y(1-y)^{n-2} I(0 < y < 1) \end{array}$$

イロト イヨト イヨト イヨト

Complete Statistics 000000000	Basu's Theorem 00000000●	
Obtaining $E[Y_{(2)}]$		

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ & = & n(n-1)y(1-y)^{n-2}I(0 < y < 1) \\ F_{(2)} & \sim & \mathrm{Beta}(2,n-1) \end{array}$$

Ξ.

<ロト <問ト < 目と < 目と

Complete Statistics	Basu's Theorem 00000000●	
<u></u>		

Obtaining
$$\mathit{E}[\mathit{Y}_{(2)}]$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ & = & n(n-1)y(1-y)^{n-2}I(0 < y < 1) \\ Y_{(2)} & \sim & \mathrm{Beta}(2,n-1) \\ E[Y_{(2)}] & = & \frac{2}{n+1} \end{array}$$

▲口▶▲圖▶▲圖▶▲圖▶ ■ の文令

Complete Statistics	Basu's Theorem 00000000●	
<u></u>		

Obtaining
$$\mathit{E}[\mathit{Y}_{(2)}]$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ & = & n(n-1)y(1-y)^{n-2}I(0 < y < 1) \\ Y_{(2)} & \sim & \mathrm{Beta}(2,n-1) \\ E[Y_{(2)}] & = & \frac{2}{n+1} \end{array}$$

Therefore,
$$E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right] = \frac{E[Y_{(1)}+Y_{(2)}]}{E[Y_{(n)}]} = \frac{E[Y_{(1)}]+E[Y_{(2)}]}{E[Y_{(n)}]} = \frac{3}{n}$$

Complete Statistics	Basu's Theorem	Summary
00000000	00000000	•

Summary

Today

- More on complete statistics
- Basu's Theorem

< 行

Complete Statistics	Basu's Theorem	Summary
00000000	00000000	•

Summary

Today

- More on complete statistics
- Basu's Theorem

Next Lecture

Exponential Family

æ