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Last Lecture

Biostatistics 602 - Statistical Inference

Lecture 23
Interval Estimation

= What is p-value?

= What is the advantage of p-value compared to hypothesis testing
procedure with size a?

Hyun Min Kang = How can one construct a valid p-value?
» What is Fisher's exact p-value?

= |s Fisher’s exact p-value uniformly distributed under null hypothesis?
April 11th, 2013
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p-Values Constructing a valid p-value

Conclusions from Hypothesis Testing

» Reject Hj or accept Hy.
Theorem 8.3.27.
Let W(X) be a test statistic such that large values of W give evidence
that H; is true. For each sample point x, define
’ p(x) = sup Pr(W(X) > W(x)|6)
A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for every sample Then p(X) is a valid p-value.
point x. Small values of p(X) given evidence that H; is true. A p-value is ’
valid if, for every 6 € 5 and every 0 < a < 1,
Pr(p(X) < alf) < o

= If size of the test is («) small, the decision to reject Hy is convincing.

* If a is large, the decision may not be very convincing.
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p-Values by conditioning on on sufficient statistic Example - Fisher’'s Exact Test

Problem

Suppose S(X) is a sufficient statistic for the model {f(x|0) : 6 € Qo}.
(not necessarily including alternative hypothesis). If the null hypothesis is
true, the conditional distribution of X given S = s does not depend on 6.
Again, let W(X) denote a test statistic where large value give evidence
that Hj is true. Define

Let X7 and X, be independent observations with X; ~ Binomial(ny, p1),
and X ~ Binomial(ng, p2). Consider testing Hy : p; = p2 versus
H; : py > po. Find a valid p-value function.

| A\

Solution
p(x) = Pr(W(X) > W(x)[S= 5(x)) Under Hy, if we let p denote the common value of p; = ps. Then the join
. . . . .. pmf of (Xl, Xg) is
If we consider only the conditional distribution, by Theorem 8.3.27, this is ) g
a valid p-value, meaning that f(o, 22|p) = ( )Pml(l - p)nl_m( )pm(l —p)"
Pr(p(X) < Oé‘S: 8) <« _ (n’l) <n2)pm1+m(1 _ p)n1+n2—$1—$2
I I

Therefore S = X; + X5 is a sufficient statistic under Hj.

v
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Solution - Fisher's Exact Test (cont'd) Interval Estimation

Given the value of S = s, it is reasonable to use X; as a test statistic and 0(X) is usually represented as a point estimator

reject Hy in favor of H; for large values of Xj,because large values of X; |
correspond to small values of Xs = s — X;. The conditional distribution of
X given S = s is a hypergeometric distribution.

nterval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and

L(X) < U(X). Based on the observed sample x, we can make an inference
() (.75 that

fXi=mls) = W 0 € [L(X), UX)]

S

Then we call [L(X), U(X)] an interval estimator of 6.

Thus, the p-value conditional on the sufficient statistic s = x1 + 2o is
Three types of intervals

min(n1,s) . .

: - Two-sided interval [L(X), U(X

p(z, 1) = Z 1Gs) wo s.| ed in .erva [L(X), U( )]
= = One-sided (with lower-bound) interval [L(X), c0)

= One-sided (with upper-bound) interval (—oo, U(X)]

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 7/29 Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013



Interval Estimation
0000000

Example

Let X; & N(u,1). Define

1. A point estimator of p : X

Pr(X=p) =0
2. An interval estimator of p : [X — 1, X + 1]
Prue [X—1,X+1)) = Pr(X—-1<pu<X+1)
= Pr(u—1§7(§M+1)
= Pr(—vn<Vn(X—p) <+/n)
= Pr(—vn<Z<n) —> 1

as n — oo, where Z ~ N(0,1).
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Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 —a, we call it a (1 — «) confidence interval

| A

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 0, its expected length is
defined as
E[U(X) = L(X)]

where X are random samples from fx(x|#). In other words, it is the
average length of the interval estimator.
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Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as
Pr(6 € [L(X), UX)])

In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.

Definition: Confidence Coefficient

Confidence coefficient is defined as
inf Pr(9 € [L(X), UX)))
g

| A\
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How to construct confidence interval?

A confidence interval can be obtained by inverting the acceptance region
of a test.

There is a one-to-one correspondence between tests and confidence
intervals (or confidence sets).

11 /29
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Example

X; i N(6,0?) where o2 is known. Consider Hy : 6 = 0y vs. Hy : 0 # 0.

As previously shown, level oo LRT test reject Hy if and only if

X — 6o
a/v/n

> Za/Z

Equivalently, we accept Hy if ‘7(/_—\%‘ < Zg )2

Accepting Hy : 8 = 6y because we believe our data "agrees with" the
hypothesis 6 = 6.

/2 < z(/_j% <z /2
o —
HO—WLZ&/QS X <90+\/_ Oc/?

Acceptance region is {x 20 — \/»ZQ/Q <z<0)+ \/>Za/2}
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Confidence intervals and level o test

Theorem 9.2.2

@ For each 0y € Q, let A(6p) be the acceptance region of a level « test
of Hy:0 =0y vs. Hy :60+# 6y Define a set C(X) ={6:x¢€ A(0)},
then the random set C(X) is a 1 — « confidence set.

@® Conversely, if C(X) is a (1 — «) confidence set for 6, for any 6y,
define the acceptance region of a test for the hypothesis Hy : 6 = 6
by A(6p) = {x: 60 € C(x)}. Then the test has level a.
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Example (cont'd)

As this is size « test, the probability of accepting Hy is 1 — «.

g — o

Pr (90 — —\/ﬁza/g <X <0+ _\/ﬁza/2)
g g

= P (X—Tza/2<«90<X—i—\/_a/2>

Since 6 is arbitrary,

l—-a =

l—a =

Pr<X— 7 a/2<9<X+\/_ a/2>

Therefore, [X — %ZQ/Q,X—F fza/g] is (1 — a) confidence interval (Cl).
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d.
For X; g

sample space

(6,02), the acceptance region A(6p) is a subset of the

A(bp) = {x 1 0p — %lza/g < X<+ %Za/z}

The confidence set C(X) is a subset of the parameter space

oX) = <7(ge+iza/2}

g
0:0— —
{ Jn o= NG

— g — g
= {GX—%ZQ/QSHSX'F%ZQ/Q}
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Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem
9.2.2 is an interval, but quite often
@ To obtain (1 — «) two-sided Cl [L(X), U(X)], we invert the
acceptance region of a level « test for Hy : 0 = 6y vs. Hy : 0 # 6
@® To obtain a lower-bounded Cl [L(X), c0), then we invert the
acceptance region of a test for Hy : § = 6y vs. Hy : 6 > 6y, where
Q={0:0>00}.
©® To obtain a upper-bounded ClI (—oo, U(X)], then we invert the

acceptance region of a test for Hy : 0 = 0y vs. Hy : 0 < 0y, where
Q={60:0<6}.

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013
Confidence Interval

0000®000000000

Example - two-sided Cl - Solution

Hy:pp=po vs Hy @ # po. The LRT test rejects if and only if
X — po

sx/v/n

> tn—l,a/2

The acceptance region is

Z— po
A = N < t
(/'LO) {X Sx/\/ﬁ = n—l,a/?}
The confidence set is
T— [
= : <t
C(x) {u s/ = n—l,a/z}

_ . K
- {:u : _tnfl,a/Z < s /\/FL < tnl,a/Z}
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Example

Problem

X; 28 N (u, 02) where both parameters are unknown.
@ Find 1 — « two-sided Cl for p
® Find 1 — « upper bound for p

17 / 29
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Example - upper-bounded Cl - Solution

The Cl is (—o0, U(X)]. We need to invert a testing procedure for
Ho :po=po vs Hy: pp < po.
Qo
Q

{(,0%) s = po,0® > 0}
{(1,0%) : p < o, 0® > 0}

LRT statistic is

L. 62

)\(X) (l{()afrO|x)

L(j, 6|x)

where (fi9, 63) is the MLE restricted to g, and(j, 5?) is the MLE

>y (Xi—po)?
n

restricted to €2, and Within Qo, fio = po, and 63 =

Hyun Min Kang
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Example - upper bounded CI - Solution (cont'd)

Within Q, the MLE is
{ p=X 42 =Tl X?
fi=ypo &°=

n if 7( < Mo
Z?:1(Xi—ﬂo)2

if7(>,u0

1 if X > 10

L\ X (X—no)?
a0 = () ool B} o

L\ [ 2 %2 = Ho
2702 P 2&3

1 if X > 1o

= n—1 8)2( g f X
n = 1 <
LsxH(X—po)? = Ho
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Example - upper bounded CI - Solution (cont'd)

c¢** is chosen to satisfy

Pr(reject Ho|po)
Ho — 7( Kok
= Pr > c
(SX/\/7L )
X —
— Pr ( HO < —C**)

Sx/\/ﬁ
= Pr(Th—1 < —c")

Pl“( Tho1 > — c**

_tn—l,l—a = tn—l,a

l—a =

c** —

Therefore, LRT level o test

reject Hy if

23 / 29
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Example - upper bounded CI - Solution (cont'd)

For 0 < ¢ < 1, LRT test rejects Hy if X < o and

n—1 2
n_ < ¢
n—1 ; (X—po)?
T
X )2
( 2Mo) o
Sx
ﬂO_X > o

sx/v/n
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Example - upper bounded CI - Solution (cont'd)

Acceptance region is

Inverting the above to get Cl
aX) = {u:Xe A}

= XS
- M.SX/\/%_ n—1,x

J— Sx
= {H X —p > _%tnl,a}
SX

= {ﬂ TS X"‘ %tn—l,a}
— s
_ (_OO,X+ 7;;}
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Example - lower bounded CI - solution

LRT level « test reject Hy if and only if

X — 1o
>
Sx/\/ﬁ n—1,a
Acceptance region is
X o

A(po) = {x:

Confidence interval is

<t_
sx/vn ~ " l’a}

CX) = {n:Xe Au)} = {u: 2oL t}

— s
{:UJ Y > X — \/_Xﬁtn—l,a}
— s

|:X_ \/_X?Ltn—l,ouoo>
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Example (cont'd)

Consider testing Hy : it = po vs. Hi : i # po. The Wald statistic

X — po
Z, =
n Sn
for a consistent estimator of o/y/n. From previous lectures, we know that
LSy -m B o
n—14% !
=1
> i (X — X)? rp. 9
(n—1)n © o n
The Wald level o test
(X = po)V/n
2o )2

/ Z?:l(Xi_yP
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Example

Problem

X, , X, are iid samples from a distribution with mean p and finite
variance o2. Construct asymptotic (1 — a) two-sided interval for u

Solution

| A\

Let X be a method of moment estimator for .
By law of large number, X is consistent for x, and by central limit theorem,

(%)

X~ AN
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Example (cont'd)

The acceptance region is
T— U n
A(po) = X: (ZT&)—\/Q; > Za/2
“n—1
(1—-a)Clis
Cx) = {p:xeAp)}
B (z— n_ |
B (e | o/
T,—T _ " (z;—7)?
|: ﬁ (_1 Raf2 l‘—i_% ) Za/2:|
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Summary

= Interval Estimation

= Confidence Interval

Next Lectures

= Reviews and Example Problems (every lecture)
= E-M algorithm

= Non-informative priors

= Bayesian Tests

A\
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