# Biostatistics 602 - Statistical Inference Lecture 02 Factorization Theorem

Hyun Min Kang

January 15th, 2013

1 What is the key difference between BIOSTAT601 and BIOSTAT602?

- What is the key difference between BIOSTAT601 and BIOSTAT602?
- 2 What is the difference between random variable and data?

- What is the key difference between BIOSTAT601 and BIOSTAT602?
- 2 What is the difference between random variable and data?
- What is a statistic?

- 1 What is the key difference between BIOSTAT601 and BIOSTAT602?
- 2 What is the difference between random variable and data?
- What is a statistic?
- **4** What is a sufficient statistic for  $\theta$ ?

- 1 What is the key difference between BIOSTAT601 and BIOSTAT602?
- 2 What is the difference between random variable and data?
- What is a statistic?
- **4** What is a sufficient statistic for  $\theta$ ?
- **5** How do we show that a statistic is sufficient for  $\theta$ ?

#### Last Lecture

#### Definition 6.2.1

A statistic  $T(\mathbf{X})$  is a *sufficient statistic* for  $\theta$  if the conditional distribution of sample  $\mathbf{X}$  given the value of  $T(\mathbf{X})$  does not depend on  $\theta$ .

#### Example

- Suppose  $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $T(X_1, \dots, X_n) = \sum_{i=1}^n X_i$  is a sufficient statistic for p.

# Recap - A Theorem for Sufficient Statistics

#### Theorem 6.2.2

- Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  is a joint pdf or pmf of X
- and  $q(t|\theta)$  is the pdf or pmf of  $T(\mathbf{X})$ .
- Then  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ ,
- if, for every  $\mathbf{x} \in \mathcal{X}$ ,
- the ratio  $f_{\mathbf{X}}(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)$  is constant as a function of  $\theta$ .

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1}(1-p)^{1-x_1} \cdots p^{x_n}(1-p)^{1-x_n}$$
$$= p^{\sum_{i=1}^n x_i}(1-p)^{n-\sum_{i=1}^n x_i}$$

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n, p)$$

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|p)}{q(T(\mathbf{x})|p)} = \frac{p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}{\binom{n}{\sum_{i=1}^n x_i} p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}$$

#### Proof

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1}(1-p)^{1-x_1} \cdots p^{x_n}(1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i}(1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|p)}{q(T(\mathbf{x})|p)} = \frac{p^{\sum_{i=1}^n x_i}(1-p)^{n-\sum_{i=1}^n x_i}}{\binom{n}{\sum_{i=1}^n x_i}} p^{\sum_{i=1}^n x_i}(1-p)^{n-\sum_{i=1}^n x_i}$$

$$= \frac{1}{\binom{n}{\sum_{i=1}^n x_i}} = \frac{1}{\binom{n}{T(\mathbf{x})}}$$

5 / 27

#### Proof

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|p)}{q(T(\mathbf{x})|p)} = \frac{p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}{\binom{n}{\sum_{i=1}^n x_i} p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}$$

$$= \frac{1}{\binom{n}{\sum_{i=1}^n x_i}} = \frac{1}{\binom{n}{T(\mathbf{x})}}$$

By theorem 6.2.2.  $T(\mathbf{X})$  is a sufficient statistic for p.

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣魚○

5 / 27

#### Theorem 6.2.6 - Factorization Theorem

• Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  denote the joint pdf or pmf of a sample  $\mathbf{X}$ .

- Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  denote the joint pdf or pmf of a sample  $\mathbf{X}$ .
- A statistic  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ , if and only if

- Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  denote the joint pdf or pmf of a sample  $\mathbf{X}$ .
- A statistic  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ , if and only if
  - There exists function  $g(t|\theta)$  and  $h(\mathbf{x})$  such that,

- Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  denote the joint pdf or pmf of a sample  $\mathbf{X}$ .
- A statistic  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ , if and only if
  - There exists function  $g(t|\theta)$  and  $h(\mathbf{x})$  such that,
  - for all sample points x,

- Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  denote the joint pdf or pmf of a sample  $\mathbf{X}$ .
- A statistic  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ , if and only if
  - There exists function  $g(t|\theta)$  and  $h(\mathbf{x})$  such that,
  - for all sample points x,
  - and for all parameter points θ,

- Let  $f_{\mathbf{X}}(\mathbf{x}|\theta)$  denote the joint pdf or pmf of a sample  $\mathbf{X}$ .
- A statistic  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ , if and only if
  - There exists function  $g(t|\theta)$  and  $h(\mathbf{x})$  such that,
  - for all sample points x,
  - and for all parameter points  $\theta$ ,
  - $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}).$

The proof below is only for discrete distributions.

### only if part

• Suppose that  $T(\mathbf{X})$  is a sufficient statistic

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$
- Because  $T(\mathbf{X})$  is sufficient,  $h(\mathbf{x})$  does not depend on  $\theta$ .

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$
- Because  $T(\mathbf{X})$  is sufficient,  $h(\mathbf{x})$  does not depend on  $\theta$ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \Pr(\mathbf{X} = \mathbf{x}|\theta)$$

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$
- Because  $T(\mathbf{X})$  is sufficient,  $h(\mathbf{x})$  does not depend on  $\theta$ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \Pr(\mathbf{X} = \mathbf{x}|\theta)$$
  
=  $\Pr(\mathbf{X} = \mathbf{x} \land T(\mathbf{X}) = T(\mathbf{x})|\theta)$ 

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$
- Because  $T(\mathbf{X})$  is sufficient,  $h(\mathbf{x})$  does not depend on  $\theta$ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \Pr(\mathbf{X} = \mathbf{x}|\theta)$$

$$= \Pr(\mathbf{X} = \mathbf{x} \land T(\mathbf{X}) = T(\mathbf{x})|\theta)$$

$$= \Pr(T(\mathbf{X}) = T(\mathbf{x})|\theta) \Pr(\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x}),\theta)$$

The proof below is only for discrete distributions.

### only if part

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$
- Because  $T(\mathbf{X})$  is sufficient,  $h(\mathbf{x})$  does not depend on  $\theta$ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \Pr(\mathbf{X} = \mathbf{x}|\theta)$$

$$= \Pr(\mathbf{X} = \mathbf{x} \land T(\mathbf{X}) = T(\mathbf{x})|\theta)$$

$$= \Pr(T(\mathbf{X}) = T(\mathbf{x})|\theta) \Pr(\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x}),\theta)$$

$$= \Pr(T(\mathbf{X}) = T(\mathbf{x})|\theta) \Pr(\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x}))$$

◆ロト ◆個ト ◆ 恵ト ◆恵ト ○ 恵 ・ 釣 ♀ (

The proof below is only for discrete distributions.

- Suppose that  $T(\mathbf{X})$  is a sufficient statistic
- Choose  $g(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$
- and  $h(\mathbf{x}) = \Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = T(\mathbf{x})\right)$
- Because  $T(\mathbf{X})$  is sufficient,  $h(\mathbf{x})$  does not depend on  $\theta$ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \Pr(\mathbf{X} = \mathbf{x}|\theta)$$

$$= \Pr(\mathbf{X} = \mathbf{x} \land T(\mathbf{X}) = T(\mathbf{x})|\theta)$$

$$= \Pr(T(\mathbf{X}) = T(\mathbf{x})|\theta) \Pr(\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x}),\theta)$$

$$= \Pr(T(\mathbf{X}) = T(\mathbf{x})|\theta) \Pr(\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x}))$$

$$= q(T(\mathbf{x})|\theta)h(\mathbf{x})$$

## if part

• Assume that the factorization  $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$  exists.

- Assume that the factorization  $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$  exists.
- Let  $q(t|\theta)$  be the pmf of  $T(\mathbf{X})$

- Assume that the factorization  $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$  exists.
- Let  $q(t|\theta)$  be the pmf of  $T(\mathbf{X})$
- Define  $A_t = \{ \mathbf{y} : T(\mathbf{y}) = t \}.$

- Assume that the factorization  $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$  exists.
- Let  $q(t|\theta)$  be the pmf of  $T(\mathbf{X})$
- Define  $A_t = \{ \mathbf{y} : T(\mathbf{y}) = t \}.$

$$q(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$$

- Assume that the factorization  $f_{\mathbf{x}}(\mathbf{x}|\theta) = q(T(\mathbf{x})|\theta)h(\mathbf{x})$  exists.
- Let  $q(t|\theta)$  be the pmf of  $T(\mathbf{X})$
- Define  $A_t = \{ \mathbf{y} : T(\mathbf{y}) = t \}.$

$$q(t|\theta) = \Pr(T(\mathbf{X}) = t|\theta)$$
  
=  $\sum_{\mathbf{y} \in A_t} f_{\mathbf{X}}(\mathbf{y}|\theta)$ 

### if part (cont'd)

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} \ = \ \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{q(T(\mathbf{x})|\theta)} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y}\in A_{T(\mathbf{x})}}f_{\mathbf{X}}(\mathbf{y}|\theta)}$$

#### if part (cont'd)

$$\begin{split} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{q(T(\mathbf{x})|\theta)} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y} \in A_{T(\mathbf{x})}} f_{\mathbf{X}}(\mathbf{y}|\theta)} \\ &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y} \in A_{T(\mathbf{x})}} g(T(\mathbf{y})|\theta)h(\mathbf{y})} \end{split}$$

# Factorization Theorem : Proof (cont'd)

### if part (cont'd)

$$\begin{split} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{q(T(\mathbf{x})|\theta)} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y} \in A_{T(\mathbf{x})}} f_{\mathbf{X}}(\mathbf{y}|\theta)} \\ &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y} \in A_{T(\mathbf{x})}} g(T(\mathbf{y})|\theta)h(\mathbf{y})} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{g(T(\mathbf{x})|\theta)\sum_{A_{\mathbf{y} \in T(\mathbf{x})}} h(\mathbf{y})} \end{split}$$

# Factorization Theorem : Proof (cont'd)

### if part (cont'd)

$$\begin{split} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{q(T(\mathbf{x})|\theta)} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y}\in A_{T(\mathbf{x})}}f_{\mathbf{X}}(\mathbf{y}|\theta)} \\ &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y}\in A_{T(\mathbf{x})}}g(T(\mathbf{y})|\theta)h(\mathbf{y})} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{g(T(\mathbf{x})|\theta)\sum_{A_{\mathbf{y}\in T(\mathbf{x})}}h(\mathbf{y})} \\ &= \frac{h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}}h(\mathbf{y})} \end{split}$$

# Factorization Theorem: Proof (cont'd)

### if part (cont'd)

$$\begin{split} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{q(T(\mathbf{x})|\theta)} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y}\in A_{T(\mathbf{x})}}f_{\mathbf{X}}(\mathbf{y}|\theta)} \\ &= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{\mathbf{y}\in A_{T(\mathbf{x})}}g(T(\mathbf{y})|\theta)h(\mathbf{y})} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{g(T(\mathbf{x})|\theta)\sum_{A_{\mathbf{y}\in T(\mathbf{x})}}h(\mathbf{y})} \\ &= \frac{h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}}h(\mathbf{y})} \end{split}$$

Thus,  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$ , if and only if  $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$ .

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

From Example 6.2.4, we know that

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2}{2\sigma^2}\right)$$

From Example 6.2.4, we know that

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2}{2\sigma^2}\right)$$

We can define  $h(\mathbf{x})$ , so that it does not depend on  $\mu$ .

$$h(\mathbf{x}) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{2\sigma^2}\right)$$

From Example 6.2.4, we know that

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2}{2\sigma^2}\right)$$

We can define  $h(\mathbf{x})$ , so that it does not depend on  $\mu$ .

$$h(\mathbf{x}) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{2\sigma^2}\right)$$

Because  $T(\mathbf{X}) = \overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$ , we have

$$g(t|\mu) = \Pr(T(\mathbf{X}) = t|\mu) = \exp\left(-\frac{n(t-\mu)^2}{2\sigma^2}\right)$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

From Example 6.2.4, we know that

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2}{2\sigma^2}\right)$$

We can define  $h(\mathbf{x})$ , so that it does not depend on  $\mu$ .

$$h(\mathbf{x}) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{2\sigma^2}\right)$$

Because  $T(\mathbf{X}) = \overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$ , we have

$$g(t|\mu) = \Pr(T(\mathbf{X}) = t|\mu) = \exp\left(-\frac{n(t-\mu)^2}{2\sigma^2}\right)$$

Then  $f_{\mathbf{X}}(\mathbf{x}|\mu) = h(\mathbf{x})g(T(\mathbf{x})|\mu)$  holds, and  $T(\mathbf{X}) = \overline{X}$  is a sufficient statistic for  $\mu$  by the factorization theorem.

Hyun Min Kang 10 / 27

#### **Problem**

•  $X_1, \dots, X_n$  are iid observations uniformly drawn from  $\{1, \dots, \theta\}$ .

$$f_X(x|\theta) = \begin{cases} \frac{1}{\theta} & x = 1, 2, \dots, \theta \\ 0 & \text{otherwise} \end{cases}$$

• Find a sufficient statistic for  $\theta$  using factorization theorem.

### Joint pmf

The joint pmf of  $X_1, \dots, X_n$  is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \begin{cases} \theta^{-n} & \mathbf{x} \in \{1, 2, \cdots, \theta\}^n \\ 0 & \text{otherwise} \end{cases}$$

#### Joint pmf

The joint pmf of  $X_1, \dots, X_n$  is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \begin{cases} \theta^{-n} & \mathbf{x} \in \{1, 2, \cdots, \theta\}^n \\ 0 & \text{otherwise} \end{cases}$$

### Define $h(\mathbf{x})$

$$h(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in \{1, 2, \dots\}^n \\ 0 & \text{otherwise} \end{cases}$$

Note that  $h(\mathbf{x})$  is independent of  $\theta$ .

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

### Define $T(\mathbf{X})$ and $g(t|\theta)$

Define  $T(\mathbf{X}) = \max_{i} x_i$ , then

$$g(t|\theta) = \Pr(T(\mathbf{x}) = t|\theta) = \Pr(\max_{i} x_i = t|\theta) = \begin{cases} \theta^{-n} & t \leq \theta \\ 0 & \text{otherwise} \end{cases}$$

## Define $T(\mathbf{X})$ and $g(t|\theta)$

Define  $T(\mathbf{X}) = \max_i x_i$ , then

$$g(t|\theta) = \Pr(T(\mathbf{x}) = t|\theta) = \Pr(\max_{i} x_i = t|\theta) = \begin{cases} \theta^{-n} & t \leq \theta \\ 0 & \text{otherwise} \end{cases}$$

### Putting things together

•  $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$  holds.

### Define $T(\mathbf{X})$ and $g(t|\theta)$

Define  $T(\mathbf{X}) = \max_{i} x_i$ , then

$$g(t|\theta) = \Pr(T(\mathbf{x}) = t|\theta) = \Pr(\max_{i} x_i = t|\theta) = \begin{cases} \theta^{-n} & t \le \theta \\ 0 & \text{otherwise} \end{cases}$$

### Putting things together

- $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$  holds.
- Thus, by the factorization theorem,  $T(\mathbf{X}) = \max_i X_i$  is a sufficient statistic for  $\theta$ .

# Example of $h(\mathbf{x})$ when $\theta = 5, \ n = 1$



# Example of $g(\mathbf{x})$ when $\theta = 5, n = 1$



# Example of $f(\mathbf{x})$ when $\theta = 5$ , n = 1



•  $I_A(x) = 1$  if  $x \in A$ , and  $I_A(x) = 0$  otherwise.

- $I_A(x) = 1$  if  $x \in A$ , and  $I_A(x) = 0$  otherwise.
- $\mathbb{N}=\{1,2,\cdots\}$ , and  $\mathbb{N}_{\theta}=\{1,2,\cdots,\theta\}$

- $I_A(x) = 1$  if  $x \in A$ , and  $I_A(x) = 0$  otherwise.
- $\mathbb{N}=\{1,2,\cdots\}$ , and  $\mathbb{N}_{\theta}=\{1,2,\cdots,\theta\}$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{\mathbb{N}_{\theta}}(x_i) = \theta^{-n} \prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_i)$$

- $I_A(x) = 1$  if  $x \in A$ , and  $I_A(x) = 0$  otherwise.
- $\mathbb{N} = \{1, 2, \dots\}$ , and  $\mathbb{N}_{\theta} = \{1, 2, \dots, \theta\}$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{\mathbb{N}_{\theta}}(x_{i}) = \theta^{-n} \prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_{i})$$

$$\prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_{i}) = \left(\prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})\right) I_{\mathbb{N}_{\theta}} \left[\max_{i} x_{i}\right] = \left(\prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})\right) I_{\mathbb{N}_{\theta}} \left[T(\mathbf{x})\right]$$

- $I_A(x) = 1$  if  $x \in A$ , and  $I_A(x) = 0$  otherwise.
- $\mathbb{N}=\{1,2,\cdots\}$ , and  $\mathbb{N}_{\theta}=\{1,2,\cdots,\theta\}$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{\mathbb{N}_{\theta}}(x_{i}) = \theta^{-n} \prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_{i})$$

$$\prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_{i}) = \left(\prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})\right) I_{\mathbb{N}_{\theta}} \left[\max_{i} x_{i}\right] = \left(\prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})\right) I_{\mathbb{N}_{\theta}} \left[T(\mathbf{x})\right]$$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \theta^{-n} I_{\mathbb{N}_{\theta}} \left[T(\mathbf{x})\right] \prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})$$

- $I_A(x) = 1$  if  $x \in A$ , and  $I_A(x) = 0$  otherwise.
- $\mathbb{N} = \{1, 2, \cdots\}$ , and  $\mathbb{N}_{\theta} = \{1, 2, \cdots, \theta\}$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{\mathbb{N}_{\theta}}(x_{i}) = \theta^{-n} \prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_{i})$$

$$\prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}(x_{i}) = \left(\prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})\right) I_{\mathbb{N}_{\theta}} \left[\max_{i} x_{i}\right] = \left(\prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})\right) I_{\mathbb{N}_{\theta}} \left[T(\mathbf{x})\right]$$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \theta^{-n} I_{\mathbb{N}_{\theta}} \left[T(\mathbf{x})\right] \prod_{i=1}^{n} I_{\mathbb{N}}(x_{i})$$

 $f_{\mathbf{X}}(\mathbf{x}|\theta)$  can be factorized into  $g(t|\theta)=\theta^{-n}I_{\mathbb{N}_{\theta}}(t)$  and  $h(\mathbf{x})=\prod_{i=1}^{n}I_{\mathbb{N}}(x_{i})$ , and  $T(\mathbf{x})=\max_{i}x_{i}$  is a sufficient statistic.

January 15th, 2013

### **Problem**

•  $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ 

### **Problem**

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Both  $\mu$  and  $\sigma^2$  are unknown

#### **Problem**

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Both  $\mu$  and  $\sigma^2$  are unknown
- The parameter is a vector :  $\theta = (\mu, \sigma^2)$ .

#### **Problem**

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Both  $\mu$  and  $\sigma^2$  are unknown
- The parameter is a vector :  $\boldsymbol{\theta} = (\mu, \sigma^2)$ .
- The problem is to use the Factorization Theorem to find the sufficient statistics for  $\theta$ .

#### **Problem**

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Both  $\mu$  and  $\sigma^2$  are unknown
- The parameter is a vector :  $\theta = (\mu, \sigma^2)$ .
- The problem is to use the Factorization Theorem to find the sufficient statistics for  $\theta$ .

#### How to solve it

• Propose  $\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$  as sufficient statistic for  $\mu$  and  $\sigma^2$ .

◆□ ト ◆□ ト ◆ 直 ト ◆ 直 ・ り へ ()・

#### **Problem**

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Both  $\mu$  and  $\sigma^2$  are unknown
- The parameter is a vector :  $\theta = (\mu, \sigma^2)$ .
- The problem is to use the Factorization Theorem to find the sufficient statistics for  $\theta$ .

#### How to solve it

- Propose  $\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$  as sufficient statistic for  $\mu$  and  $\sigma^2$ .
- Use Factorization Theorem to decompose  $f_{\mathbf{x}}(\mathbf{x}|\mu,\sigma^2)$ .

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q♡

18 / 27

#### **Problem**

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Both  $\mu$  and  $\sigma^2$  are unknown
- The parameter is a vector :  $\theta = (\mu, \sigma^2)$ .
- The problem is to use the Factorization Theorem to find the sufficient statistics for  $\theta$ .

#### How to solve it

- Propose  $\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$  as sufficient statistic for  $\mu$  and  $\sigma^2$ .
- Use Factorization Theorem to decompose  $f_{\mathbf{x}}(\mathbf{x}|\mu,\sigma^2)$ .

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q♡

18 / 27

Decomposing  $f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)$  - Similarly to Example 6.2.4

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i-\mu)^2}{2\sigma^2}\right)$$

# Decomposing $f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)$ - Similarly to Example 6.2.4

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Hyun Min Kang

### Decomposing $f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)$ - Similarly to Example 6.2.4

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i}-\overline{x}+\overline{x}-\mu)^{2}}{2\sigma^{2}}\right)$$

Hyun Min Kang

### Decomposing $f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)$ - Similarly to Example 6.2.4

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i}-\overline{x}+\overline{x}-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i}-\overline{x})^{2} - \frac{n}{2\sigma^{2}} (\overline{x}-\mu)^{2}\right)$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

### Propose a sufficient statistic

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

### Propose a sufficient statistic

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$$

### Propose a sufficient statistic

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$$

$$T_1(\mathbf{x}) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

### Propose a sufficient statistic

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$$

$$T_1(\mathbf{x}) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$T_2(\mathbf{x}) = \sum_{i=1}^n (x_i - \overline{x})^2$$

### Propose a sufficient statistic

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X}))$$

$$T_1(\mathbf{x}) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$T_2(\mathbf{x}) = \sum_{i=1}^n (x_i - \overline{x})^2$$

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$h(\mathbf{x}) = 1$$

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 - \frac{n}{2\sigma^2} (\overline{x} - \mu)^2\right)$$

$$h(\mathbf{x}) = 1$$

$$g(t_1, t_2 | \mu, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}t_2 - \frac{n}{2\sigma^2}(t_1 - \mu)^2\right)$$



$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^{2}) = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} - \frac{n}{2\sigma^{2}} (\overline{x} - \mu)^{2}\right)$$

$$h(\mathbf{x}) = 1$$

$$g(t_{1}, t_{2}|\mu, \sigma^{2}) = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} t_{2} - \frac{n}{2\sigma^{2}} (t_{1} - \mu)^{2}\right)$$

$$f_{\mathbf{X}}(\mathbf{x}|\mu, \sigma^{2}) = g(T_{1}(\mathbf{x}), T_{2}(\mathbf{x})|\mu, \sigma^{2}) h(\mathbf{x})$$

# Factorize $f_{\mathbf{x}}(\mathbf{x}|\mu,\sigma^2)$

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^{2}) = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} - \frac{n}{2\sigma^{2}} (\overline{x} - \mu)^{2}\right)$$

$$h(\mathbf{x}) = 1$$

$$g(t_{1}, t_{2}|\mu, \sigma^{2}) = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} t_{2} - \frac{n}{2\sigma^{2}} (t_{1} - \mu)^{2}\right)$$

 $f_{\mathbf{x}}(\mathbf{x}|\mu,\sigma^2) = q(T_1(\mathbf{x}), T_2(\mathbf{x})|\mu,\sigma^2)h(\mathbf{x})$ 

Thus, 
$$\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{x}), T_2(\mathbf{x})) = (\overline{x}, \sum_{i=1}^n (x_i - \overline{x})^2)$$
 is a sufficient statistic for  $\boldsymbol{\theta} = (\mu, \sigma^2)$ .

#### **Problem**

Assume  $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), -\infty < \theta < \infty$ . Find a sufficient statistic for  $\theta$ .

#### **Problem**

Assume  $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), -\infty < \theta < \infty$ . Find a sufficient statistic for  $\theta$ .

## Rewriting $f_{\mathbf{X}}(\mathbf{x}|\theta)$

$$f_X(x|\theta) = \begin{cases} 1 & \text{if } \theta < x < \theta + 1 \\ 0 & \text{otherwise} \end{cases} = I(\theta < x < \theta + 1)$$

#### **Problem**

Assume  $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), -\infty < \theta < \infty$ . Find a sufficient statistic for  $\theta$ .

## Rewriting $f_{\mathbf{X}}(\mathbf{x}|\theta)$

$$\begin{array}{lcl} f_X(x|\theta) & = & \left\{ \begin{array}{ll} 1 & \text{if } \theta < x < \theta + 1 \\ 0 & \text{otherwise} \end{array} \right. \\ f_{\mathbf{X}}(\mathbf{x}|\theta) & = & \prod_{i=1}^n I(\theta < x_i < \theta + 1) \end{array}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕♀(

#### **Problem**

Assume  $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), -\infty < \theta < \infty$ . Find a sufficient statistic for  $\theta$ .

## Rewriting $f_{\mathbf{X}}(\mathbf{x}|\theta)$

$$f_X(x|\theta) = \begin{cases} 1 & \text{if } \theta < x < \theta + 1 \\ 0 & \text{otherwise} \end{cases} = I(\theta < x < \theta + 1)$$

$$f_X(\mathbf{x}|\theta) = \prod_{i=1}^n I(\theta < x_i < \theta + 1)$$

$$= I(\theta < x_1 < \theta + 1, \dots, \theta < x_n < \theta + 1)$$

- 4 ロ ト 4 団 ト 4 恵 ト - 恵 - 夕 Q

22 / 27

#### **Problem**

Assume  $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1)$ ,  $-\infty < \theta < \infty$ . Find a sufficient statistic for  $\theta$ .

## Rewriting $f_{\mathbf{X}}(\mathbf{x}|\theta)$

$$\begin{split} f_X(x|\theta) &= \begin{cases} 1 & \text{if } \theta < x < \theta + 1 \\ 0 & \text{otherwise} \end{cases} = I(\theta < x < \theta + 1) \\ f_{\mathbf{X}}(\mathbf{x}|\theta) &= \prod_{i=1}^n I(\theta < x_i < \theta + 1) \\ &= I(\theta < x_1 < \theta + 1, \cdots, \theta < x_n < \theta + 1) \\ &= I\left(\min_i x_i > \theta \wedge \max_i x_i < \theta + 1\right) \end{split}$$

◆ロト ◆部ト ◆差ト ◆差ト を めへ

$$h(\mathbf{x}) = 1$$

$$h(\mathbf{x}) = 1$$

$$T_1(\mathbf{x}) = \min_i x_i$$
  
 $T_2(\mathbf{x}) = \max_i x_i$ 

$$T_2(\mathbf{x}) = \max_i x_i$$

$$h(\mathbf{x}) = 1$$

$$T_1(\mathbf{x}) = \min_i x_i$$

$$T_2(\mathbf{x}) = \max_i x_i$$

$$g(t_1, t_2 | \theta) = I(t_1 > \theta \land t_2 < \theta + 1)$$

$$h(\mathbf{x}) = 1$$

$$T_1(\mathbf{x}) = \min_i x_i$$

$$T_2(\mathbf{x}) = \max_i x_i$$

$$g(t_1, t_2 | \theta) = I(t_1 > \theta \land t_2 < \theta + 1)$$

$$f_{\mathbf{X}}(\mathbf{x} | \theta) = I\left(\min_i x_i > \theta \land \max_i < \theta + 1\right)$$

$$= g(T_1(\mathbf{x}), T_2(\mathbf{x}) | \theta) h(\mathbf{x})$$

#### **Factorization**

$$h(\mathbf{x}) = 1$$

$$T_1(\mathbf{x}) = \min_i x_i$$

$$T_2(\mathbf{x}) = \max_i x_i$$

$$g(t_1, t_2 | \theta) = I(t_1 > \theta \land t_2 < \theta + 1)$$

$$f_{\mathbf{X}}(\mathbf{x} | \theta) = I\left(\min_i x_i > \theta \land \max_i < \theta + 1\right)$$

$$= g(T_1(\mathbf{x}), T_2(\mathbf{x}) | \theta) h(\mathbf{x})$$

Thus,  $\mathbf{T}(\mathbf{x}) = (T_1(\mathbf{x}), T_2(\mathbf{x})) = (\min_i x_i, \max_i x_i)$  is a sufficient statistic for  $\theta$ .

## Sufficient Order Statistics

### Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ .
- $f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$

### Sufficient Order Statistics

### Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ .
- $f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$
- Define order statistics  $x_{(1)} \leq \cdots \leq x_{(n)}$  as an ordered permutation of  ${\bf x}$

### Sufficient Order Statistics

### Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ .
- $f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$
- Define order statistics  $x_{(1)} \leq \cdots \leq x_{(n)}$  as an ordered permutation of  ${\bf x}$
- Is the order statistic a sufficient statistic for θ?

$$\mathbf{T}(\mathbf{x}) = (T_1(\mathbf{x}), \cdots, T_n(\mathbf{x}))$$
$$= (x_{(1)}, \cdots, x_{(n)})$$

## Factorization of Order Statistics

$$h(\mathbf{x}) = 1$$

### Factorization of Order Statistics

$$h(\mathbf{x}) = 1$$
  
 $g(t_1, \dots, t_n | \theta) = \prod_{i=1}^n f_X(t_i | \theta)$ 

25 / 27

### Factorization of Order Statistics

$$h(\mathbf{x}) = 1$$

$$g(t_1, \dots, t_n | \theta) = \prod_{i=1}^n f_X(t_i | \theta)$$

$$f_{\mathbf{X}}(\mathbf{x} | \theta) = g(T_1(\mathbf{x}), \dots, T_n(\mathbf{x}) | \theta) h(\mathbf{x})$$

(Note that  $(T_1(\mathbf{x}), \dots, T_n(\mathbf{x}))$  is a permutation of  $(x_1, \dots, x_n)$ ) Therefore,  $\mathbf{T}(\mathbf{x}) = (x_{(1)}, \dots, x_{(n)})$  is a sufficient statistics for  $\theta$ .

### **Problem**

X is one observation from a  $\mathcal{N}(0,\sigma^2)$ . Is |X| a sufficient statistic for  $\sigma^2$ ?

#### **Problem**

X is one observation from a  $\mathcal{N}(0, \sigma^2)$ . Is |X| a sufficient statistic for  $\sigma^2$ ?

### Solution

$$f_X(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Define

$$h(x) = 1$$

#### **Problem**

X is one observation from a  $\mathcal{N}(0, \sigma^2)$ . Is |X| a sufficient statistic for  $\sigma^2$ ?

### Solution

$$f_X(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Define

$$h(x) = 1$$

$$T(x) = |x|$$

#### **Problem**

X is one observation from a  $\mathcal{N}(0, \sigma^2)$ . Is |X| a sufficient statistic for  $\sigma^2$ ?

### Solution

$$f_X(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Define

$$h(x) = 1$$

$$T(x) = |x|$$

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{t^2}{2\sigma^2}\right)$$

#### **Problem**

X is one observation from a  $\mathcal{N}(0, \sigma^2)$ . Is |X| a sufficient statistic for  $\sigma^2$ ?

### Solution

$$f_X(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Define

$$h(x) = 1$$

$$T(x) = |x|$$

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{t^2}{2\sigma^2}\right)$$

Then  $f_X(x|\theta) = g(T(x)|\theta)h(x)$  holds, and T(X) = |X| is a sufficient statistic by the Factorization Theorem.

Hyun Min Kang

# Summary

## Today: Factorization Theorem

- $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$
- Necessary and sufficient condition of a sufficient statistic
- Uniform sufficient statistic : maximum of observations
- Normal distribution : multidimensional sufficient statistic
- One parameter, two dimensional sufficient statistics

# Summary

### Today: Factorization Theorem

- $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$
- Necessary and sufficient condition of a sufficient statistic
- Uniform sufficient statistic : maximum of observations
- Normal distribution : multidimensional sufficient statistic
- One parameter, two dimensional sufficient statistics

#### Next Lecture

Minimal Sufficient Statistics