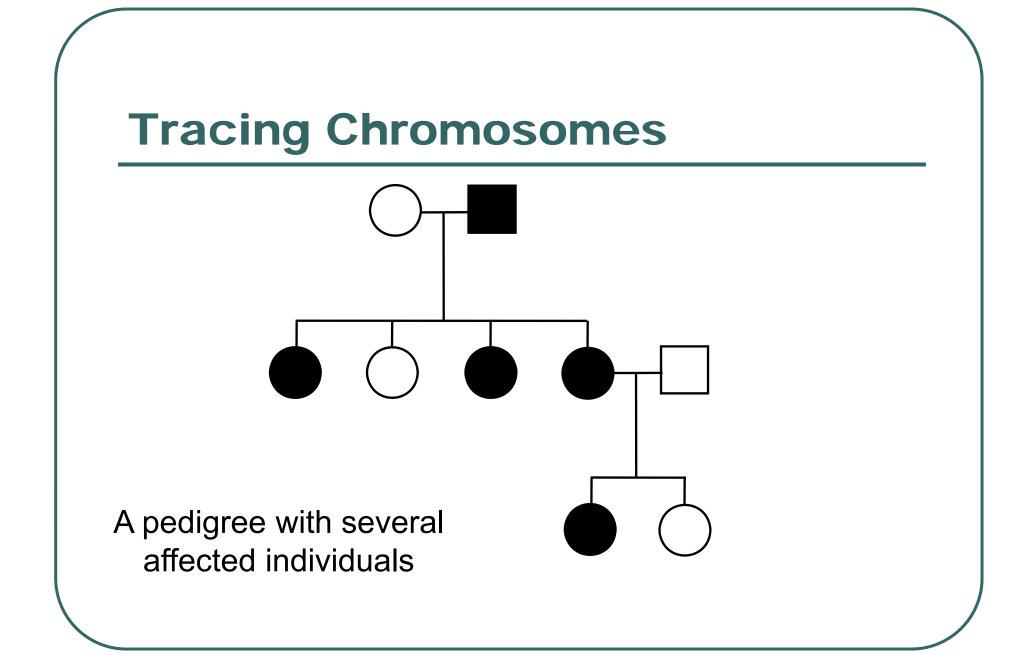
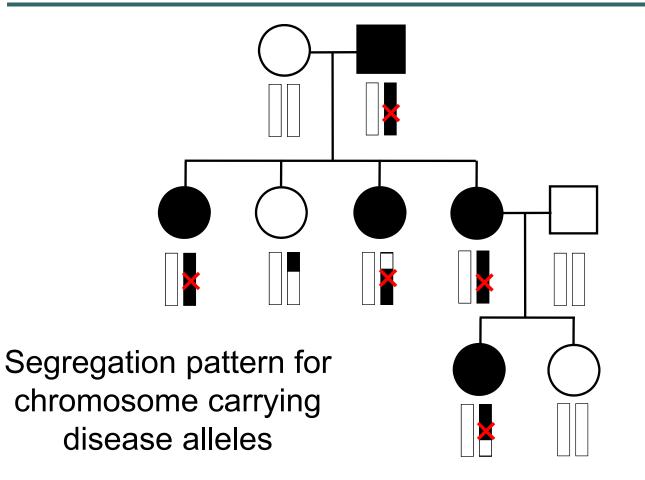
Pairs of Individuals: Simple Linkage Tests

Biostatistics 666

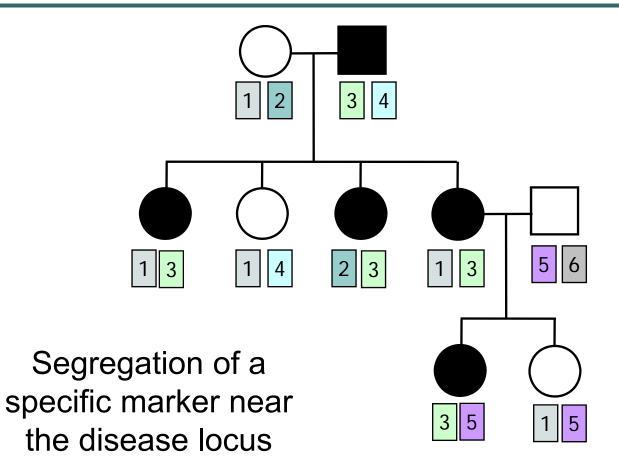
Intuition for Linkage Analysis

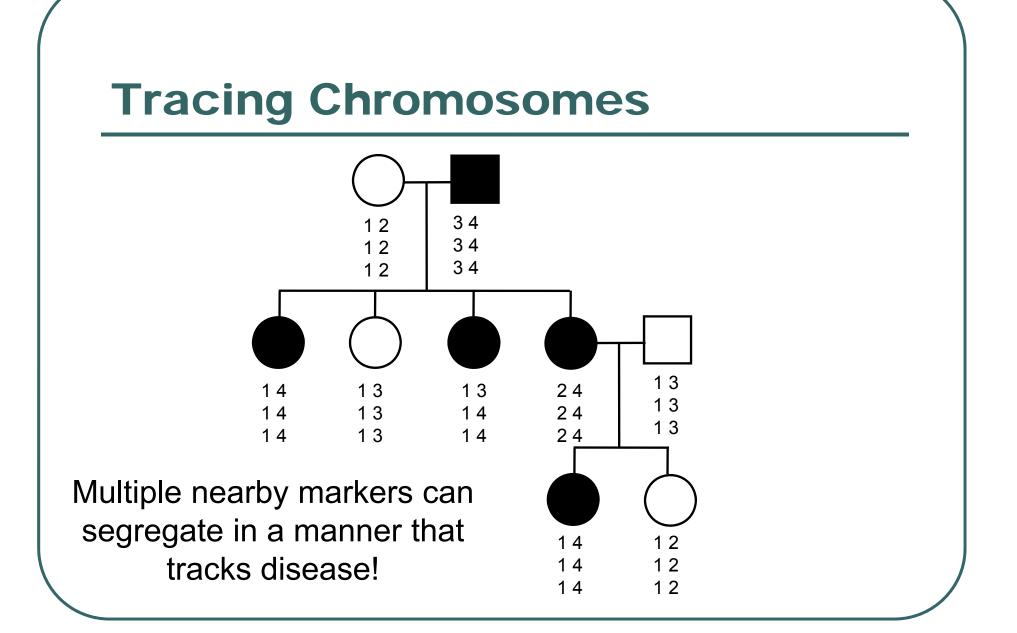
- Millions of variations could potentially be involved
 - Costly to investigate each individually
- Within families, variation is organized into a limited number of haplotypes
 - Sample modest number of markers to determine whether each stretch of chromosome is shared





Tracing Chromosomes





Today ...

- Linkage analysis with sibling pairs
- Find markers that are near disease locus
 Near means recombination fraction θ < ¹/₂

Minimalist approach ...

Bishop and Williamson (1990) Opening Line

"The availability of a large number of DNA markers has made possible mapping projects with the certainty that if:

(a) a major gene exists for a trait;

- (b) the trait is reasonably homogeneous;
- (c) there is sufficient family material available;

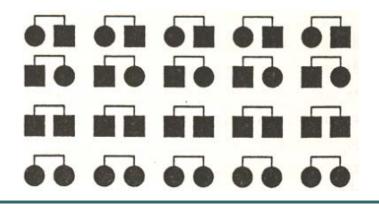
then a linked marker can be found."

Data for a Linkage Study: Minimalist Approach

- Pedigree
 - Two individuals of known relationship
- Observed Marker Genotypes
 - A single marker
- Phenotypes
 - Both individuals are affected

Allele Sharing Analysis

- Are affected pairs more similar than expected?
- Less powerful than analysis of larger pedigrees
- Does not require disease model to be specified

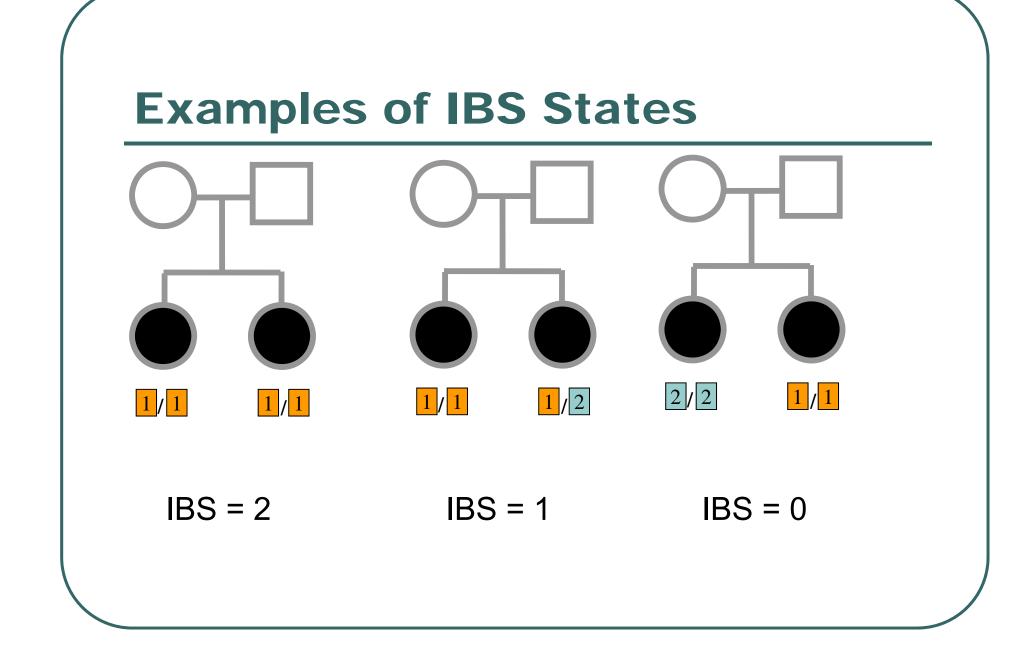


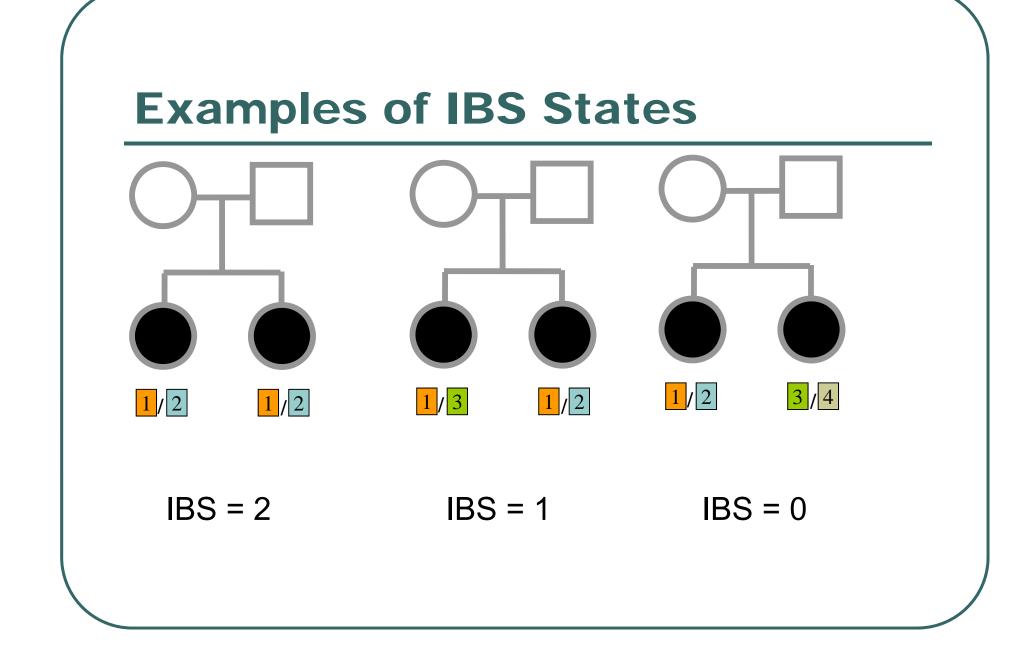
Consider Autosomal Recessive Locus ...

- For a collection of sibling pairs...
- What patterns of sharing do you expect at the disease locus?
- What patterns of sharing to you expect as you move away from the disease locus?

IBS Based Methods

- Sample of affected relative pairs
- Examine a marker of interest
- Count alleles shared for each pair
 - This includes both ...
 - Chromosomes that are identical-by-descent
 - Chromosomes that simply carry identical alleles





Evidence for Linkage

Increased similarity in affected pairs

Compared to:

- Unselected pairs
- Unaffected pairs
- Discordant pairs
- Expectations derived from allele frequencies

Possible Statistics

$$\chi^{2}_{2df} = \sum_{i} \frac{\left[N_{IBS=i} - E(N_{IBS=i})\right]^{2}}{E(N_{IBS=i})}$$

(general test, for sibling pairs)

$$\chi^{2}_{1df} = \frac{\left[N_{IBS=0} - E(N_{IBS=0})\right]^{2}}{E(N_{IBS=0})} + \frac{\left[N_{IBS>0} - E(N_{IBS>0})\right]^{2}}{E(N_{IBS>0})}$$

(grouping often preferable for other relatives)

- Assuming all counts are relatively large
- If counts are small, use binomial or trinomial distribution

Calculating Expected IBS

- For any relative pair, calculate:
- 1. Probability of IBD sharing
 - 0, 1 or 2 alleles
- 2. Conditional probability of IBS sharing
 - 0, 1, 2 alleles
- 3. IBS sharing >= IBD sharing
 - Why?

IBD

- The underlying sharing of chromosomes segregating within a family
- Siblings share 0, 1 or 2 alleles
 - Probabilities $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$
- Unilineal relatives share 0 or 1 alleles

P(Marker Genotype|IBD State)

Relative		IBD			
І П		0 1		2	
(a,b)	(c,d)	$4p_ap_bp_cp_d$	0	0	
(a,a)	(b,c)	$2p_a^2p_bp_c$	0	0	
(a,a)	(b,b)	$p_{a}^{-2}p_{b}^{-2}$	0	0	
(a,b)	(a,c)	$4\mathbf{p_a}^2\mathbf{p_b}\mathbf{p_c}$	$p_a p_b p_c$	0	
(a,a)	(a,b)	$\overline{2p_a}^3 \overline{p_b}$	$p_a^2 p_b$	0	
(a,b)	(a,b)	$4\bar{p_a}^2\bar{p_b}^2$	$(p_{a}p_{b}^{2}+p_{a}^{2}p_{b})$	$2p_a p_b$	
(a,a)	(a,a)		p_a^3	p_a^2	
rior Probability		1/4	1/2	1⁄4	

note. Assuming alleles unordered within genotypes

Example, Assuming Equal Allele Frequencies

	P(IBS=0)	P(IBS=1)	P(IBS=2)
2 alleles, IBD=0	.125	.500	.375
2 alleles, IBD=1	.000	.500	.500
3 alleles, IBD=0	.222	.592	.185
3 alleles, IBD=1	.000	.666	.333

IBS Probabilities

No. of Alleles	P(IBS=0)	P(IBS=1)	P(IBS=2)
2	.03	.37	.60
3.05		.48	.47
4	4 .08		.40
20 .21		.52	.27
∞ .25		.50	.25

Sibling IBS as a function of allele count, for marker with equally frequent alleles

Inference from Example

- IBS approaches IBD as number of alleles increases
- If linkage is being tested with chi-square test, how does the number of alleles (and marker informativeness) affect these two tests:
 - A test of whether N_{IBS >= 1} increases?
 - A test of whether N_{IBS > 1} increases?

Results of Bishop and Williamson (1990)

- Effect size, P(IBS | Affected pair)
- Number of alleles at marker
- Different relationships
 - Recombination fraction

More Alleles Increase Power

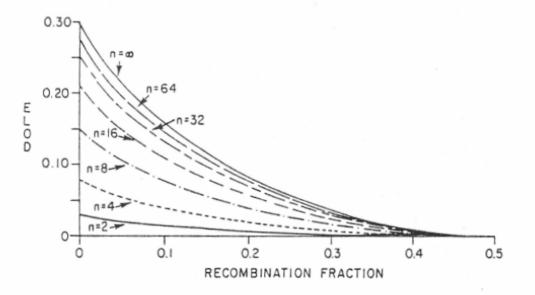


Figure 3 Variation in ELOD as a function of n, the number of alleles at the marker locus. All alleles are assumed to have frequency 1/n. This calculation is performed for the grandparent-grandchild relationship with a rare trait allele frequency.

Effect of Recombination Varies According to Relationship

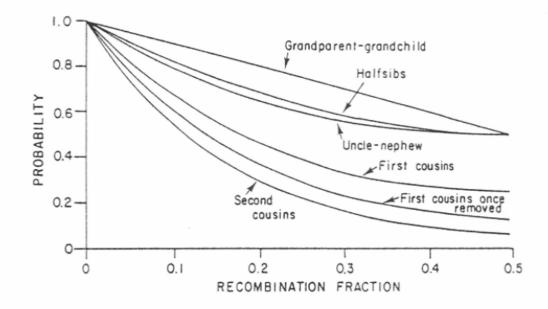
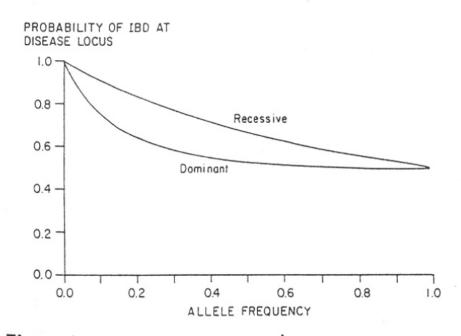
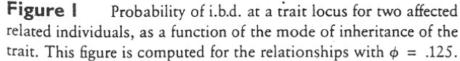


Figure 2 Probability of i.b.d. at a second linked locus conditional on i.b.d. at an index locus, as a function of the recombination fraction r between the loci, for specific genetic relationships. This function is $d_{11}(r)$ in the notation of table 1.

With no phenocopies, rare alleles are easier to map





In general, phenocopies decrease power

Table 2

Average Informativeness for Mapping a Partially Penetrant Dominant Trait with Phenocopies

p and x	μ ^a	Phenocopy Rate	Relative Information Content (%)
.01:		37.65	and esther records
.000	.96	.00	100
.001	.96	.05	98
.01	.92	.33	81
.02	.88	.50	61
.05	.74	.71	23
.10	.61	.83	5
.10:			
.000	.75	.00	100
.001	.75	.00	99
.01	.74	.04	89
.02	.73	.08	80
.05	.69	.18	56
.10	.64	.30	31

NOTE. – The recombination fraction is .1, and the marker system has eight equally frequent alleles.

^a For a grandparent-grandchild affected pair.

Shortcomings of IBS Method

- All sharing is weighted equally
 - Sharing a rare allele
 - Sharing a common allele
 - Sharing homozygous genotype
 - Sharing heterozygous genotype

Inefficient.

An Alternative, Likelihood Based Formulation

- Depends on three parameters z_0 , z_1 , z_2
 - Probability of sharing 0, 1 and 2 alleles IBD
- Under the null, determined by relationship
- Under the alternative, determined by genetic model

An Alternative, Likelihood Based Formulation

Under the null hypothesis:

 $L = (\frac{1}{4})^{n_{BD0}} (\frac{1}{2})^{n_{BD1}} (\frac{1}{4})^{n_{BD2}}$

Under the alternative hypothesis

$$L = (\hat{z}_0)^{n_{BD0}} (\hat{z}_1)^{n_{BD1}} (\hat{z}_2)^{n_{BD2}}$$

Maximum Likelihood Based Linkage Tests ...

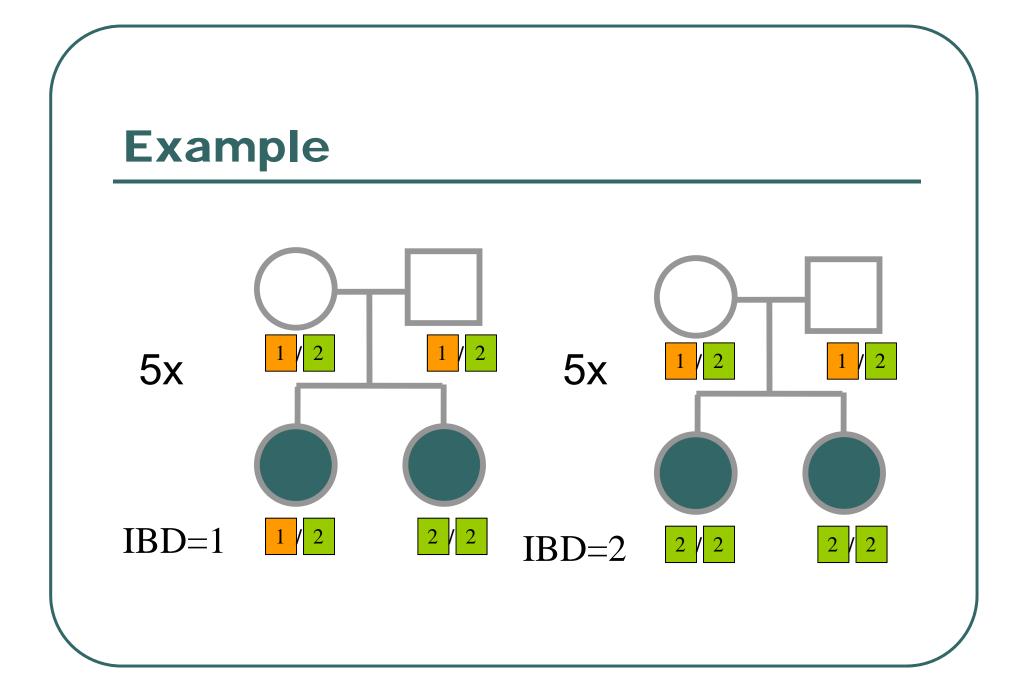
- Evaluate likelihood at null hypothesis
- Evaluate likelihood at MLE
- Compare alternatives using likelihood ratio test

Commonly Used Test Statistics

$$LOD = \log_{10} \frac{L(\hat{z}_0, \hat{z}_1, \hat{z}_2)}{L(z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4})}$$

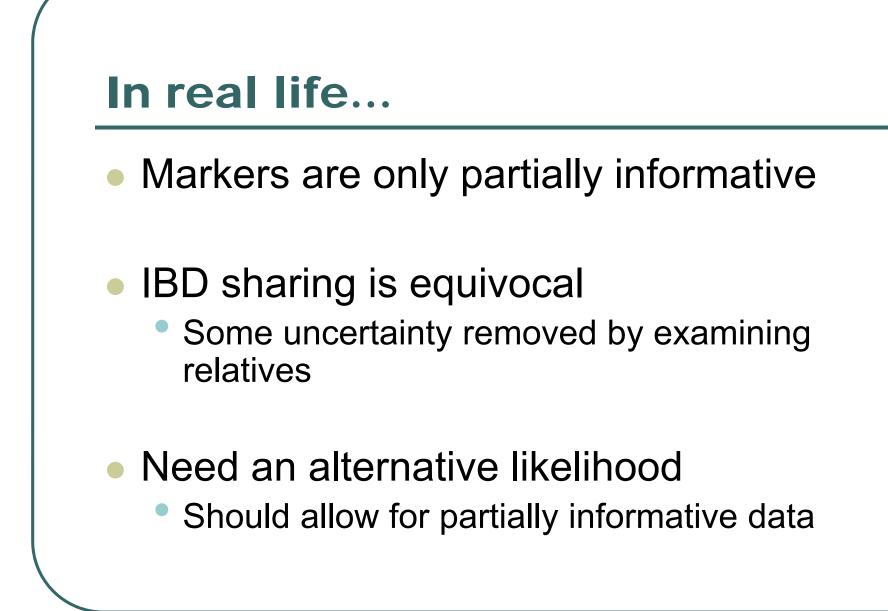
$$\chi^2 = 2 \ln \frac{L(\hat{z}_0, \hat{z}_1, \hat{z}_2)}{L(z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4})}$$

 $= 2 \ln L(\hat{z}_0, \hat{z}_1, \hat{z}_2) - 2 \ln L(z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4})$



Example

- Assume that 10 sib-pairs are examined
 - 5 share 2 alleles IBD
 - 5 share 1 allele IBD
- Calculate likelihood for null
- Calculate MLEs
- Calculate LOD score
- Evaluate LOD for each pair



Desirable Properties

- Models IBD probabilities z_0, z_1, z_2
 - Probability of sharing 0, 1 and 2 alleles IBD
- Uses partial information on IBD sharing
- For unambiguous data, equivalent to previous likelihood

For A Single Family

$$L_{i} = \sum_{j=0}^{2} P(IBD = j | ASP) P(Genotypes_{i} | IBD = j) = \sum_{j=0}^{2} z_{j} w_{ij}$$

Risch (1990) defines

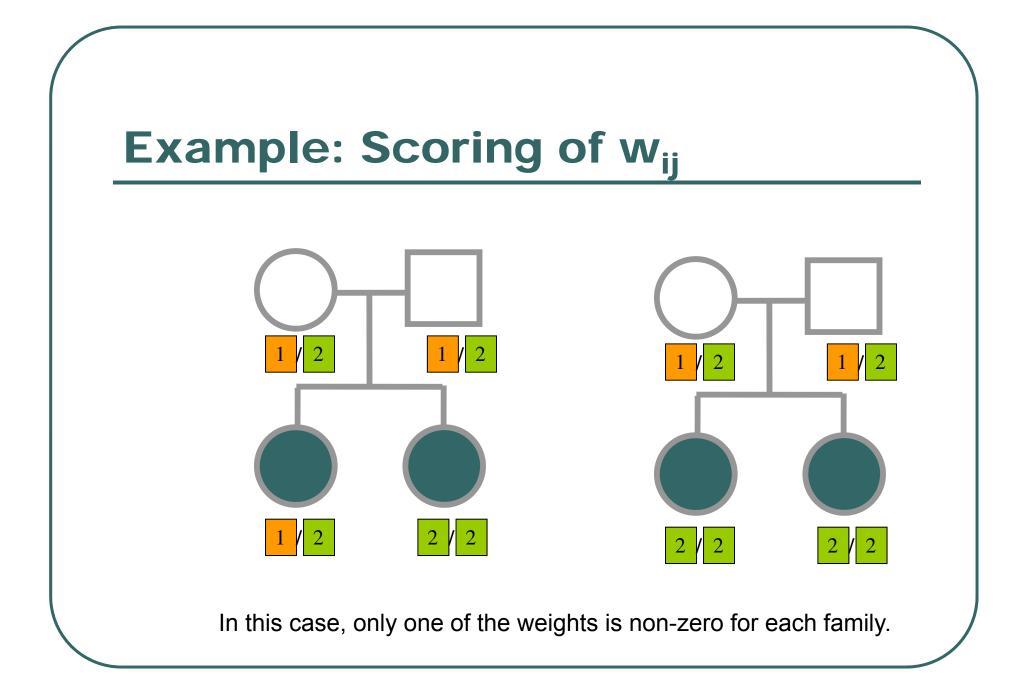
$$w_{ij} = P(Genotypes_i | IBD = j)$$

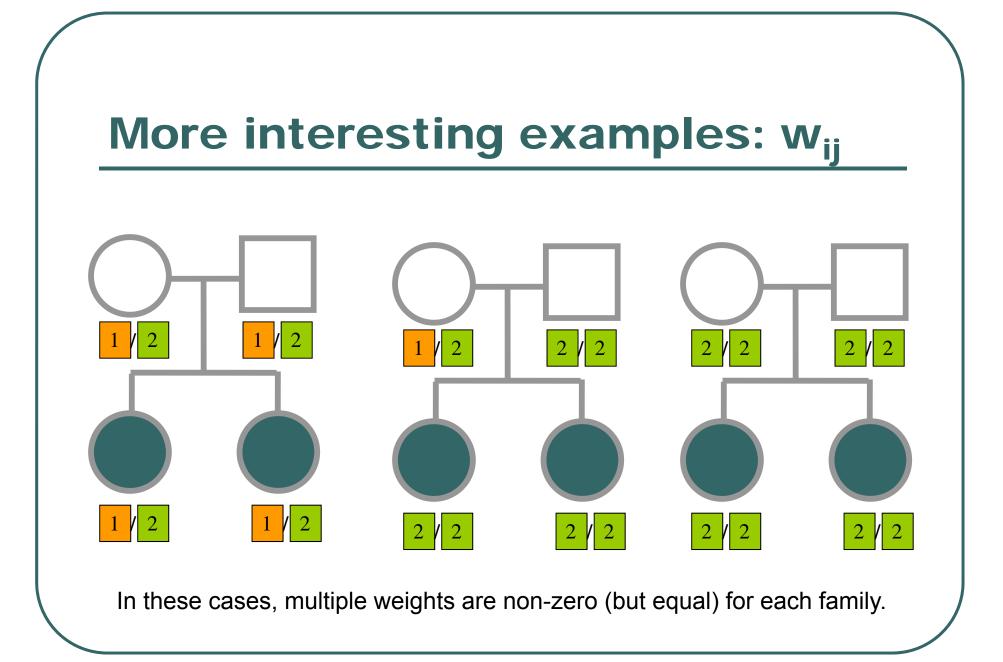
We only need proportionate w_{ij}

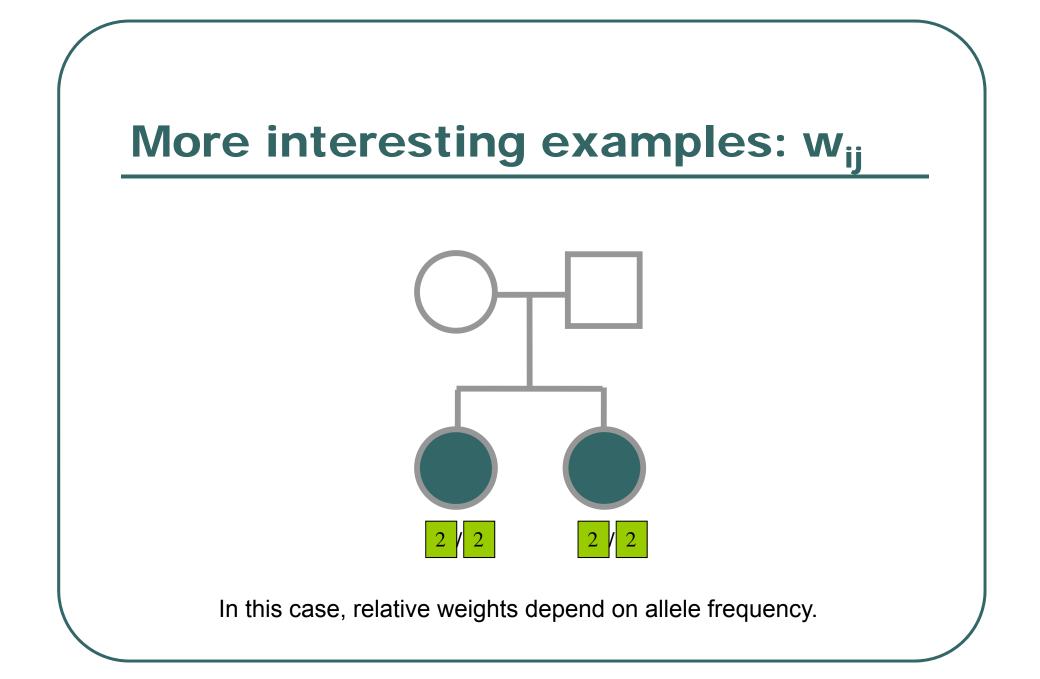
$$L(z_0, z_1, z_2) = \prod_i \sum_j z_j w_{ij}$$

$$LOD = \log_{10} \prod_{i} \frac{\hat{z}_{0} w_{i0} + \hat{z}_{1} w_{i1} + \hat{z}_{2} w_{i2}}{\frac{1}{4} w_{i0} + \frac{1}{2} w_{i1} + \frac{1}{4} w_{i2}}$$

The MLS statistic is the LOD evaluated at the MLEs of z_0, z_1, z_2







How to maximize likelihood?

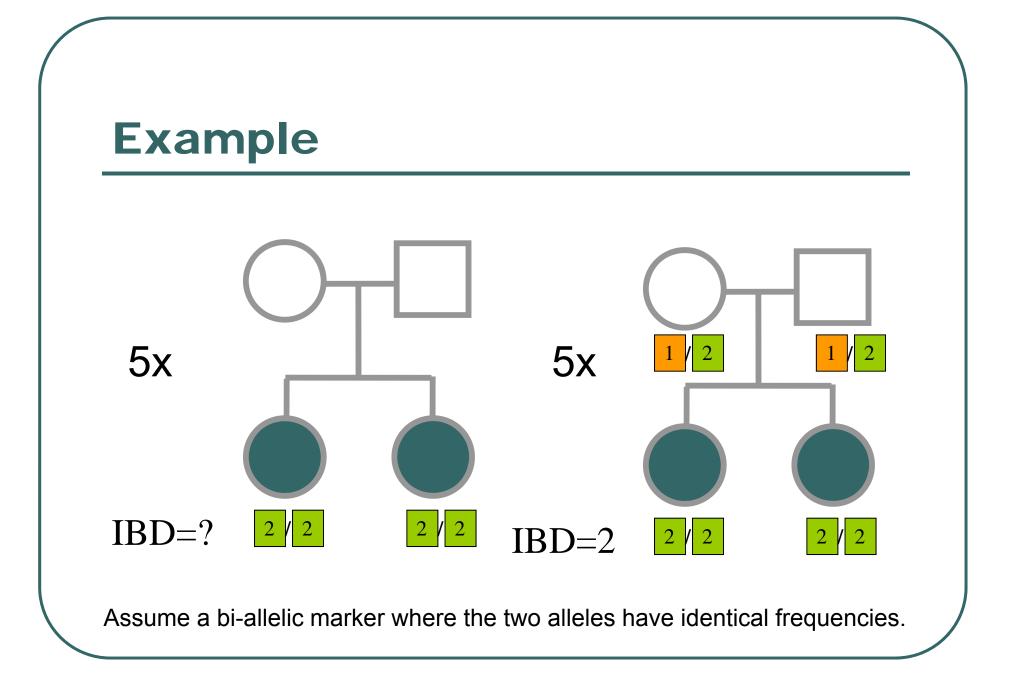
- If all families are informative
 - Use sample proportions of IBD=0, 1, 2

If some families are uninformative

- Use an E-M algorithm
- At each stage generate complete dataset with fractional counts
- Iterate until estimates of LOD and z parameters are stable

Assigning Partial Counts in E-M

P(IBD = j | Genotypes) = $- \underline{P(IBD = j \mid ASP)P(Genotypes \mid IBD = j)}$ L_{i} $\frac{P(IBD = j \mid ASP)P(Genotypes \mid IBD = j)}{2}$ $\sum_{k=0}^{L} P(IBD = k \mid ASP) P(Genotypes \mid IBD = k)$ $=\frac{z_{j}w_{ij}}{\sum_{k}^{2}z_{k}w_{ik}}$

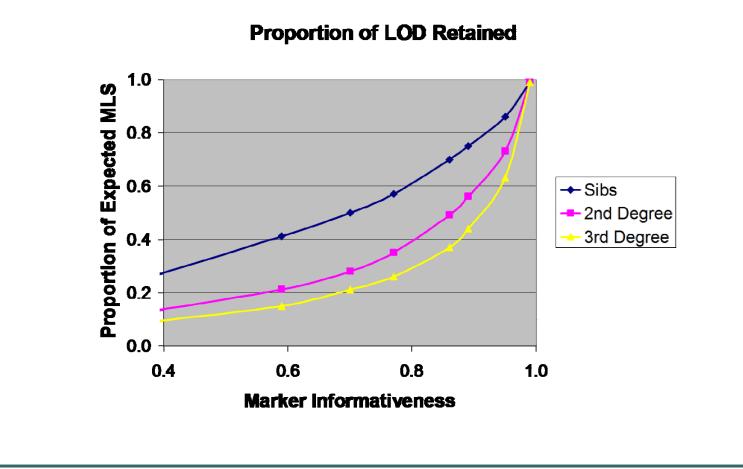


Example of E-M Steps

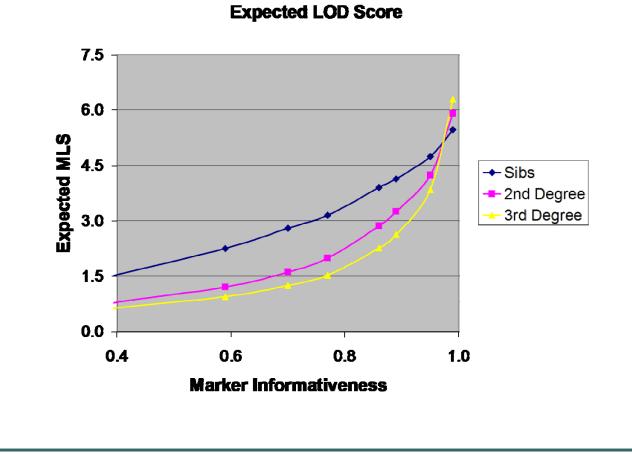
Parameters			Equivocal Families			Other			
z0	z1	z2	IBD=0	IBD=1	IBD=2	IBD=2	LOD	LODi	LODu
0.250	0.500	0.250	0.56	2.22	2.22	5	0.00	0.00	0.00
0.056	0.222	0.722	0.08	0.66	4.26	5	3.1 9	2.30	0.89
0.008	0.066	0.926	0.01	0.17	4.82	5	4.01	2.84	1.16
0.001	0.017	0.982	0.00	0.04	4.96	5	4.20	2.97	1.23
0.000	0.004	0.996	0.00	0.01	4.99	5	4.25	3.00	1.24
0.000	0.001	0.999	0.00	0.00	5.00	5	4.26	3.01	1.25
0.000	0.000	1.000	0.00	0.00	5.00	5	4.26	3.01	1.25

Properties of Pair Analyses Explored by Risch

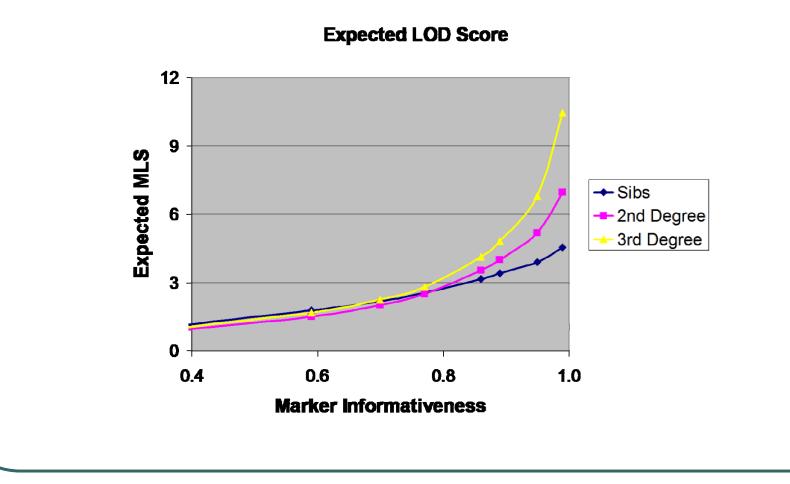
- Effect of marker informativeness
- Effect of adding relative genotypes
- Size of genetic effect
- Degree of relationship



Marker Informativeness Gene of Modest Effect (λ_0 =3)



Marker Informativeness Gene of Larger Effect (λ_0 =10)



Genotypes of Other Family Members

- Genotyping only pair decreseas LOD score by
 - Up to 33% if only sib-pairs are typed
 - Up to 60% for second degree relatives
 - Up to 70% for third degree relatives
- Genotyping effort decreases by
 - 50% if only sib-pairs are typed
 - 60% if only second degree relatives typed
 - 75% if only third degree relatives typed

Recommended Reading

- Bishop DT and Williamson JA (1990)
 Am J Hum Genet 46:254-265
- Good introduction to linkage analysis in affected relative pairs, discusses
 - Marker choice
 - Recombination fraction
 - Disease model
 - Type of relative pair

Recommended Reading

• Risch (1990)

- Linkage Strategies for Genetically Complex Traits. III. The Effect of Marker Polymorphism on Analysis of Affected Relative Pairs
- Am J Hum Genet **46:**242-253
- Introduces MLS method for linkage analysis
 - Still, one of the best methods for analysis pair data
- Evaluates different sampling strategies
 - Results were later corrected by Risch (1992)