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Genetic Association Analysis

INTRODUCTION



Genetic assoclation studies

A Goal: Identify genetic variants associated with
diseases and traits

A Why?
I Improve understanding of genetic mechanisms
underlying diseases and traits
I ldentify potential drug targets for new therapies

I Screen individuals with high risk for disease
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Genetic architecture of complex traits
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Genetic architecture of complex traits
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Genetic architecture of complex traits
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Genotype arraypased GWAS identified
thousands of associated variants
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Genomewide significant SNPs by MAF
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Genomewide significant SNPs by MAF
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Genomewide significant SNPs by MAF
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Genomewide significant SNPs by MAF
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Genetic Association Analysis

DATA OVERVIEW



Phenotypes: binary trait
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Phenotypes: quantitative trait (QT)
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Genotypes: hard genotypes

m markers (SNPSs)

n individuals
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Genotype imputation

A Goal:to increase power by using previously
genotyped GWAS samples

A Problem: GWAS samples genotyped at fewer
or different variant sites

A Method: Usegenotype imputatiorto fill in
mIssing genotypes

(Marchiniet. al.,Nat. Genet.2007; Li et. alGenet.Epidemal 2009)



Using genotype imputation to

fill In missing genotypes
1. Starting Data

Genotyped sample

.. CcC. . G . C.
Referencehaplotypes

AAGATCTT CCT
A GCTUCTU CAT
AAGATCGCTCT
AAGATCTACT



Using genotype imputation to
fill In missing genotypes

2. ldentify shared regions of chromosome

Genotyped sample

Referencehaplotypes

AAGATCTT CCT
AGATCGCTCT
AAGATCTACT



Using genotype imputation to
fill In missing genotypes

3. Fill in missing genotypes

Genotyped sample

Referencehaplotypes

AAGATCTT CCT
AGATCGCTCT
AAGATCTACT



Genotypes:. imputed dosages

m markers (SNPs)

1.99 0.21 0.98 0.01 X 2.00
0.00 1.4 0.00 0.00 X 1.00
0.01 0.8 1.00 0.00 X 2.00
n individuals{ 134 16 003 0.00 X 1.99
04 0.89 1.00 0.03 X 0.99
X X X X X X
1.01 0.34 2.00 0.00 X 0.01

Imputation Quality Score

0.7 04 098 099 X 0.97

(Marchiniet. al.,Nat. Genet.2007; Li et. alGenet.Epidemal 2009)



Additional covariates

C covariates

4L | &
Sex Age BM
(

1 24.5
0 36 23.7
1 72 30.2

n individuals{ 0 66 26.0
0 65 27.0
X X X
0 55 22.7



Study individuals:
relatedness and population structure

A Unrelated individuals

A Related individuals
I ldentify any relationships between individuals

A Population structure
I Individuals are from different populations



ANALYSIS OF COMMON VARIANTS



Genetic architecture of complex traits
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Single variant analysis

Test each variant for association with outcome
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Analysis methods

A Binary traits

I Contingency table tests cannot adjust for
covariates

AChisquare Test
A CochrarArmitageTrend Test
ACAaKSNRa 9EI Ol ¢Sad
I Logistic regression can account for covariates
A Quantitative traits

I Linear regression
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Visualizing results:
guantile-guantile (QQ) plot)
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Visualizing results: regional plot
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Sources of association

A Causal association best
I Genetic marker alleles influence susceptibility

A Linkage disequilibrium

I Genetic marker alleles associated with otm
nearby alleles that influence susceptibility

A Population stratification

I Genetic marker is unrelated to disease alleles




Example oBpurious association
due topopulation stratification

Population 1 Population 2

Allele 1 Allele 2 Allele 1 Allele 2

Affected 20 200 Affected

(f1 A=0.-2)
25
Unaffected (f ~0.2) 100 Unaffected
1,Unaff ¥
.2=0.00 pvalue=1.0 .2=0.00 pvalue=1.0
Combined

Allele 1 Allele 2

Affected

Unaffected

.2=29.2 pvalue = 6.%10°%



The stratification problem happens..

A If.

I Phenotypes differ between populations
I and allele frequencies have drifted apart

A Then..

I Unlinked markers exhibit association
I Not very useful for gene mapping!

A For exampleGlaucoma has prevalence of ~2% in
elderly Caucasians, but ~8% Iin Afridanericans



Possible solutions for

population stratification

A Avoid stratification by design
I Collect a better matched sample by ancestry

I Use familybased controls
A E.g. apply Transmission Disequilibrium Test (TDT)

A Analyze association by population groups
I Using self reported ethnicity or genetic markers
I Carry out association analysis within each group

A Account for inflated falsgositive rate
1. Apply genomic control
2. Adjust for population principal components
3. Variance component model for famibased association test



Genomic control

yan No stratification
E 2
I slsnsnnnninininins 2%
Test locus Unlinked ‘null’ markers
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Stratification — adjust test statistic

(Figure courtesy Shaun Purcell, Harvard, and Pak Sham, HKU)



Genomic Inflation factor

A Computec? statistic for each marker

A Genomic inflation factor ()
_ Median Observed??
Median Expected ?°

I Median expected? = 0.456
AWhy use median vs. mean?

A Adjuststatistic at candidate markers
I RepIaCEBZbiasedWith C2fair = Czbiasec“
I Should bd x ™
AWnhy?

/

(Devlin & RoedeBiometrics 1999)



QQ plots: a useful diagnostic

A Data;WTCCC Study
A Phenotype:T2D status

A Genotypesimputed using GoT:
reference

A Analysisiogistic regression

Observed (-logqq p-value)

A Classify SNPs as within or outs
Known (+£1Mb) T2D loci

A For all SNP$, = 1.095
I Some population stratification
A For Known SNPk,= 1.127

I Very inflated, but under alternative
hypothesis

Q Plot
[ GoT2D.WTCCC.noCov.score.filt2 ]

N Agc

All SNPs 15168439 1.095 -
Known 780609 1.127 .
Novel 14387830 1.093 o

2 4 6 8
Expected (—log,, p-value)



Genomic control example

Y_

Uncorrected Test Statistics




Genomic control example
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Genomic control example
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Principal components analysis (PCA)

(Figure fromNovembreet. al.,Nature 2008)
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(Price et. al.Nat. Genet.2006)



Correcting for population structure
using principal components

(Kang et. alNat. Genet.2010)



