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INTRODUCTION 
Genetic Association Analysis 



Genetic association studies 

• Goal: Identify genetic variants associated with 
diseases and traits 

 

• Why? 

– Improve understanding of genetic mechanisms 
underlying diseases and traits 

– Identify potential drug targets for new therapies 

– Screen individuals with high risk for disease 



Genetic architecture of complex traits 



Genetic architecture of complex traits 

Array-based 
genotyping 



Genetic architecture of complex traits 

Population sequencing, 
Dense reference 

imputation into GWAS, 
Specialized array 

genotyping 



Genetic architecture of complex traits 

Array-based GWAS? Family-based Sequencing 

Deep Genome with 
Very Large Samples? 



Genotype array-based GWAS identified 
thousands of associated variants 

Published G-W significant associations 
(p ≤ 5x10-8) as of 12/2012 

NHGRI GWA Catalog:  http://www.genome.gov/GWAStudies/ 



Genome-wide significant SNPs by MAF 

5,783 SNPs from GWAS Catalog with p≤5x10-8 
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Genome-wide significant SNPs by MAF 

5,783 SNPs from GWAS Catalog with p≤5x10-8 

Common associated variants: 

• Have small effect sizes 

• Explain modest proportion 
of total genetic heritability 



Genome-wide significant SNPs by MAF 

5,783 SNPs from GWAS Catalog with p≤5x10-8 

Low-frequency and rare 
associated variants may: 

• Have larger effect sizes 

• Explain larger proportion 
of trait heritability 



DATA OVERVIEW 
Genetic Association Analysis 



Phenotypes:  binary trait 
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Phenotypes:  quantitative trait (QT) 
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Genotypes:  hard genotypes 

g1 g2 g3 g4 … gm 

2 0 1 0 2 

0 1 0 0 1 

0 1 1 0 2 
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… … … … … 
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Genotype imputation 

• Goal: to increase power by using previously 
genotyped GWAS samples 

 

• Problem:  GWAS samples genotyped at fewer 
or different variant sites 

 

• Method:  Use genotype imputation to fill in 
missing genotypes 

Aside 

(Marchini et. al., Nat. Genet., 2007; Li et. al. Genet. Epidemol., 2009) 



Using genotype imputation to  
fill in missing genotypes 

A G A T C T C C T 

A G C T C T C A T 

A G A T C G C C T 

A G A T C T A C T 

. . C . . G . C . 

Genotyped sample 

Reference haplotypes 

1.  Starting Data 

Aside 



Using genotype imputation to  
fill in missing genotypes 

A G A T C T C C T 

A G C T C T C A T 

A G A T C G C C T 

A G A T C T A C T 

. . C . . G . C . 

Genotyped sample 

Reference haplotypes 

2.  Identify shared regions of chromosome 

Aside 



Using genotype imputation to  
fill in missing genotypes 

A G A T C T C C T 

A G C T C T C A T 

A G A T C G C C T 

A G A T C T A C T 

A G C T C G C C T 

Genotyped sample 

Reference haplotypes 

3.  Fill in missing genotypes 

Aside 



Genotypes:  imputed dosages 

g1 g2 g3 g4 … gm 

1.99 0.21 0.98 0.01 … 2.00 

0.00 1.4 0.00 0.00 … 1.00 

0.01 0.8 1.00 0.00 … 2.00 

1.34 1.6 0.03 0.00 … 1.99 

0.4 0.89 1.00 0.03 … 0.99 

… … … … … … 

1.01 0.34 2.00 0.00 … 0.01 

n  individuals 

m markers (SNPs) 

r2
1 r2

2 r2
3 r2

4 … r2
m 

0.7 0.4 0.98 0.99 … 0.97 

Imputation Quality Score 

(Marchini et. al., Nat. Genet., 2007; Li et. al. Genet. Epidemol., 2009) 



Additional covariates 

z1 

Sex 
z2 

Age 
… zc 

BMI 

1 54 24.5 

0 36 23.7 

1 72 30.2 

0 66 26.0 

0 65 27.0 

… … … 

0 55 22.7 

n  individuals 

c covariates 



Study individuals: 
relatedness and population structure 

• Unrelated individuals 

 

• Related individuals 

– Identify any relationships between individuals 

 

• Population structure 

– Individuals are from different populations 



ANALYSIS OF COMMON VARIANTS 
Genetic Association Analysis 



Genetic architecture of complex traits 

Array-based 
genotyping 



Single variant analysis 
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Analysis methods 

• Binary traits 

– Contingency table tests cannot adjust for 
covariates 

• Chi-square Test 

• Cochran-Armitage Trend Test 

• Fisher’s Exact Test 

– Logistic regression can account for covariates 

• Quantitative traits 

– Linear regression 



Visualizing results: Manhattan Plot 

(Willer et. al., Nat. Genet., 2009) 

BMI GWAS (Stage 1) 



Visualizing results: 
quantile-quantile (QQ) plot) 

BMI GWAS (Stage 1) 

(Willer et. al., Nat. Genet., 2009) 



Visualizing results: regional plot 

(Willer et. al., Nat. Genet., 2009) 



Sources of association 

• Causal association 
– Genetic marker alleles influence susceptibility 

 

• Linkage disequilibrium 
– Genetic marker alleles associated with other 

nearby alleles that influence susceptibility 

 

• Population stratification  
– Genetic marker is unrelated to disease alleles 

best 

useful 

misleading 



Example of spurious association 
due to population stratification 

Allele 1 Allele 2 

Affected 
50 

(f1,Aff=0.2) 
200 

Unaffected 
25 

(f1,Unaff=0.2) 
100 

Allele 1 Allele 2 

Affected 
100 

(f1,Aff=0.8) 
25 

Unaffected 
200 

(f1,Aff=0.8) 
50 

Allele 1 Allele 2 

Affected 
150 

(f1,Aff=0.4) 
225 

Unaffected 
225 

(f1,Aff=0.6) 
150 

Population 1 Population 2 

Combined 

χ2 = 0.00   p-value = 1.0 χ2 = 0.00   p-value = 1.0 

χ2 = 29.2   p-value = 6.5×10-8 



The stratification problem happens.. 

• If.. 
– Phenotypes differ between populations 
– and allele frequencies have drifted apart 

 

• Then.. 
– Unlinked markers exhibit association 
– Not very useful for gene mapping! 

 
• For example, Glaucoma has prevalence of ~2% in 

elderly Caucasians, but ~8% in African-Americans 
 

 



Possible solutions for 
population stratification 

• Avoid stratification by design 
– Collect a better matched sample by ancestry 
– Use family-based controls 

• E.g. apply Transmission Disequilibrium Test (TDT) 

 
• Analyze association by population groups 

– Using self reported ethnicity or genetic markers 
– Carry out association analysis within each group 

 
• Account for inflated false-positive rate 

1. Apply genomic control 
2. Adjust for population principal components 
3. Variance component model for family-based association test 



Genomic control 

(Figure courtesy Shaun Purcell, Harvard, and Pak Sham, HKU) 



Genomic inflation factor 

• Compute ² statistic for each marker 

• Genomic inflation factor () 
 

 

– Median expected ² = 0.456 
• Why use median vs. mean? 

• Adjust statistic at candidate markers 
– Replace ²biased with ²fair = ²biased/ 

– Should be  ≥ 1 
• Why? 

  Expected Median

 Observed Median
2

2

χ

χ


(Devlin & Roeder, Biometrics, 1999) 



QQ plots: a useful diagnostic 

• Data: WTCCC Study 

• Phenotype: T2D status 

• Genotypes: imputed using GoT2D 
reference 

• Analysis: logistic regression 

 

• Classify SNPs as within or outside 
Known (+/-1Mb) T2D loci 

• For all SNPs,  = 1.095 

– Some population stratification  

• For Known SNPs,  = 1.127 

– Very inflated, but under alternative 
hypothesis 



Genomic control example 

Y 

1 

0 

1 

1 

0 

… 

0 

g1 

2 

0 

0 

1 

0 

… 

1 

g4 … gm 

0 2 

0 1 

0 2 

0 2 

0 1 

… … 

0 0 

g3 

1 

0 

1 

0 

1 

… 

2 

g2 

0 

1 

1 

2 

1 

… 

0 

²1 ²2 ²3 ²4 ²m 

Uncorrected Test Statistics 



Genomic control example 
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Genomic control example 
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Calculate Genomic Inflation Factor 

²1,fair = ²1 /  ²m,fair 

Corrected Test Statistics 

If  ≥ 1 



Principal components analysis (PCA) 

(Price et. al., Nat. Genet., 2006) 

(Figure from Novembre et. al., Nature, 2008) 
• Use PCA to determine 

“axes of genotype 
variation” for a selected 
set of genotypes 

– Principal components 
mirror European geography 

• Include PC’s as covariates 
in regression model to 
adjust for stratification 

 



Correcting for population structure 
using principal components 

(Kang et. al., Nat. Genet., 2010) 



Variance component model for 
family-based association test 

• Population-based analysis assumes uncorrelated 
phenotypes between individuals under the null 

 

 

• Family-based analysis assumes phenotypes are 
correlated with relatives’ phenotypes 

 

 

• Similar model for population-based analysis to account 
for distant relationship inferred from dense SNP arrays 

Kij : kinship coefficient 

    : marker-based  
      kinship coefficient 
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Variance component model for 
family-based association test 

• Population-based analysis assumes uncorrelated 
phenotypes between individuals under the null 

 

 

• Family-based analysis assumes phenotypes are 
correlated with relatives’ phenotypes 

 

 

• Similar model for population-based analysis to account 
for distant relationship inferred from dense SNP arrays 

Kij : kinship coefficient 

    : marker-based kinship coeff. 

Kang HM et al, Nat Genet (2010) 42:348-54 



Genome-wide association of human height 

 NFBC 1966 birth cohort 

 Sabatti et al, Nat Genet (2008) 
41:35-46 

 Illumina 370,000 SNPs 

 5,326 unrelated individuals 

uncorrected λGC = 1.187   

95% CI : 0.992 ~ 1.008 



Uncorrected analysis 
- Overdispersion of test statistics - 

uncorrected λGC = 1.187   

Devlin & Roeder Biometrics (1999) 55:997-1004 



Conditioning on principal components 
- Overdispersion still exists - 

 G is top k(=100) eigenvectors of 
kinship matrix K 

 λGC from 1.187 to 1.074  

 λGC is still substantially higher 
than expected 

 Corrects for population structure, 
but not hidden relatedness 

100 PCs λGC = 1.074 

uncorrected λGC = 1.187   

Price AL et al, Nat Genet (2006) 38:904-909 



Variance component model 
- Overdispersion resolved - 

100 PCs λGC = 1.074 

uncorrected λGC = 1.187   

EMMAX λGC = 1.003 

95% CI : 0.992 ~ 1.008 

 Using EMMAX reduced λGC 
from 1.187 to 1.003  

 λGC falls into 95% confidence 
intervals 



Multiple genetic association studies 

• Most associated common variants have small 
effect sizes (e.g. odds ratios [OR] < 1.2) 

 

• To increase power to detect small genetic 
effect sizes, combine information across 
studies using 

– Meta-analysis of study-level association results 

– Joint analysis of all individual-level data 



Multiple studies: 
Data aggregation methods 

• Combine individual-level 
data and analyze jointly 

Study 1 Study 2 Study n 
… 

All Data 

Joint analysis 

jointjointjoint valueP,ˆ,ˆ ES



Multiple studies: 
Data aggregation methods 

 • Combine study-level 
association results using: 

– Inverse-variance weights 

– Sample-size weights 

Study 1 Study 2 Study n 
… 

Meta-analysis 
Study 1 Study 2 Study n 

… 

All Data 

Joint analysis 

jointjointjoint valueP,ˆ,ˆ ES metametameta valueP,ˆ,ˆ ES

1

11

valueP

,ˆ,ˆ



ES

2

22

valueP

,ˆ,ˆ



ES

n

nn ES

valueP

,ˆ,ˆ







Joint vs. meta-analysis 

• For common variants, both joint and meta-
analysis are both well-calibrated, and have 
near-equivalent power 

• Meta-analysis is more commonly used 

– Sharing individual-level data is difficult due to 
logistical and ethical restrictions 

• Combining multiple studies is critical to 
increase power to detect small effect sizes 

(Lin & Zeng, Genet. Epidemiol., 2010) 



Summary: analysis of 
common variants 

• Single variant analysis with regression-based 
methods have identified many trait-associated 
genetic variants 

 

• Important to account for population structure 
and/or sample relatedness to avoid spurious 
association 



ANALYSIS OF LOW-FREQUENCY AND 
RARE VARIANTS 

Genetic Association Analysis 



Genetic architecture of complex traits 

Population sequencing, 
Dense reference 

imputation into GWAS, 
Specialized array 

genotyping 



Why study rare variants? 
COMPLETE GENETIC ARCHITECTURE OF EACH TRAIT 

 

• Are there additional susceptibility loci to be found? 
• What is the contribution of each identified locus to a trait? 

– Sequencing, imputation and new arrays describe variation more fully 
– Rare variants are plentiful and should identify new susceptibility loci 

 
UNDERSTAND FUNCTION LINKING EACH LOCUS TO A TRAIT 

 
• Do we have new targets for therapy?  

What happens in gene knockouts? 
– Use sequencing to find rare human “knockout” alleles 
– Good: Results may be more clear than for animal studies 
– Bad: Naturally occurring knockout alleles are extremely rare 
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UNDERSTAND FUNCTION LINKING EACH LOCUS TO A TRAIT 

 
• Do we have new targets for therapy?  

What happens in gene knockouts? 
– Use sequencing to find rare human “knockout” alleles 
– Good: Results may be more clear than for animal studies 
– Bad: Naturally occurring knockout alleles are extremely rare 

 
 

Coding Variants Especially Useful! 



Lots of rare functional variants to discover 

SET # SNPs Singletons Doubletons Tripletons >3 Occurrences 

Synonymous 270,263 
128,319 

(47%) 
29,340 
(11%) 

13,129 
(5%) 

99,475 
(37%) 

Nonsynonymous 410,956 
234,633 

(57%) 
46,740 
(11%) 

19,274 
(5%) 

110,309 
(27%) 

Nonsense 8,913 
6,196 
(70%) 

926 
(10%) 

326 
(4%) 

1,465 
(16%) 

Non-Syn / Syn 
Ratio 

1.8 to 1 1.6 to 1 1.4 to 1 1.1 to 1 

There is  a very large reservoir of extremely rare, likely functional, coding variants. 

NHLBI Exome Sequencing Project 



Challenges for association testing of 
low-frequency variants 

• Low minor allele count (MAC) 

 

• Stringent α = 5x10-8 (multiple testing) 

 

• For binary traits: 

– Unbalanced numbers of cases and controls 
(e.g. population-based studies) 



Logistic Wald test has low power* for low-
frequency and rare variants in balanced studies 

QQ Plot 
1,060 Cases / 1,090 Controls 

*Recently noted by Xing et al. (2012) Ann Hum Genet 76:168-77 

MAC ≥ 200 

20 ≤ MAC < 200 

MAC < 20 



Logistic score test is anti-conservative for low-
frequency and rare variants in unbalanced studies 

QQ Plot 
80 Cases / 1,768 Controls 20 ≤ MAC < 200 

MAC < 20 



Recommended single marker tests for 
low-frequency variants 

Binary Traits 

• For balanced studies 
(case-control ratio < 3:2) 
– Use Firth bias-corrected*, or 

score logistic regression 

– Avoid Wald test (low power) 

• For unbalanced studies 
(case-control ratio > 3:2) 
– Use Firth, likelihood ratio 

logistic regression 

– Avoid score test 
(inflated false positive rate) 

Quantitative Traits 

• Given normally-distributed 
QTs 
– Use any linear regression test 

(Ma et. al. Genet. Epidemiol., 2013; 
Ma et. al., in preparation) *(Firth, Biometrika, 1993) 



Limitations of single marker tests 

• Single marker tests have low power for rare 
variants unless sample size very large 

• For binary traits, variants require minimum MAC 
≥ 26 to have p-values < 5x10-8: 
(No covariates; Ncases=Nctrls) 

 
Cases Ctrls 

Genotype = AA 974 1000 

Genotype = Aa 26 0 

1000 1000 

Fisher’s Exact Test p = 2.5x10-8 

Cases Ctrls 

Genotype = AA 975 1000 

Genotype = Aa 25 0 

1000 1000 

Fisher’s Exact Test p = 5.1x10-8 



Gene-based tests 

• Gene-based tests jointly 
analyze multiple rare 
variants in genetic region 
(e.g. gene) 

• Increases power by: 

– Combining information across 
rare variants 

– Requiring less stringent α, 
e.g. α = 2.5x10-6 for 20K genes 
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Burden Test 
(with weights wj) 

(Madsen & Browning, PLoS Genet., 2009) 



Selecting variants for gene-based tests 

• If include variants of all frequencies, non-causal 
and common variants will dilute signal 

• Commonly used filters or “masks”: 
– Include variants MAF ≤ 0.05 or 0.01 
– Weight variants by MAF 

• E.g. wj ~ Beta(MAF, 1, 25) 

– Select variants based on functional annotation: 
• E.g. Protein Truncating Variants only, nonsynonymous, 

missense, etc. 

• If mask is too restrictive, will reduce to single 
variant test, and no gain in power 



Categories of aggregation tests 
• Burden tests test association between (weighted) 

sum of rare alleles with disease or QT 
– CMC (Li & Leal, 2008), WSS (Madsen & Browning, 2009) 

 

• Dispersion tests measure deviations from 
expected distribution 
– SKAT (Wu et al., 2011), C-alpha (Neale et al., 2011) 

 

• Combined tests combine strengths of burden and 
dispersion tests 
– SKAT-O (Lee et al., 2012) 



Power of gene-based tests 

• Power of gene-based tests affected by the 
underlying (unknown) genetic architecture of 
the analyzed region: 

– Number of associated variants in region 

– Number of neutral variants diluting signals 

– Whether direction of effect is consistent within 
gene 

 

 



Power comparison 
(All causal variants 100% deleterious) 

10% Variants in Region are Causal 50% Variants in Region are Causal 

P
o

w
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P
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w
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Burden is most powerful when there are many causal variants 
with same direction of effect 

(Ma et al., in preparation) 



Power comparison 
(Causal variants are 50% deleterious / 50% protective) 

10% Variants in Region are Causal 50% Variants in Region are Causal 
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SKAT is most powerful when there are causal variants with 
opposite direction of effects 

(Ma et al., in preparation) 



Power comparison 
(Causal variants are 50% deleterious / 50% protective) 

10% Variants in Region are Causal 50% Variants in Region are Causal 

P
o

w
e
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P
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w
e
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SKAT-O is generally powerful and robust for different genetic 
architectures 

(Ma et al., in preparation) 



Summary: analysis of  
low-frequency variants 

• Single marker tests remain useful for low-
frequency variants 

– Need to carefully select well-calibrated tests 

• Gene-based tests can be more powerful for 
rare variants 

– Power generally determined by underlying genetic 
architecture 


