Introduction to Coalescent Models

Biostatistics 666

Last Lecture

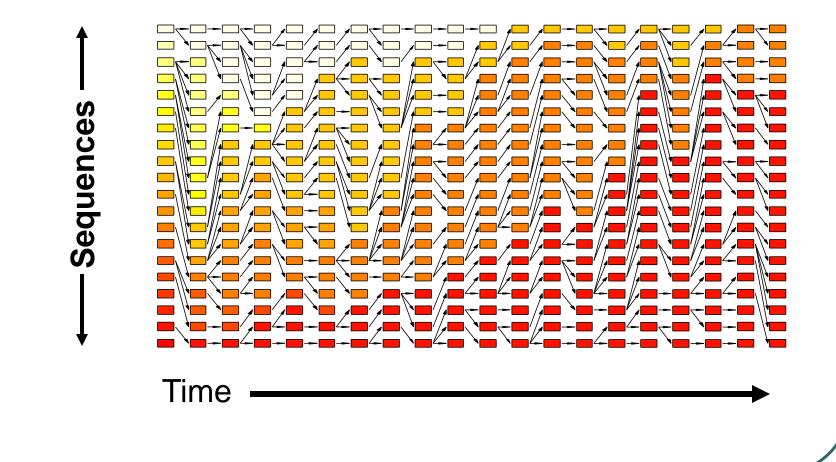
- Linkage Equilibrium
 - Expected state for distant markers
- Linkage Disequilibrium
 - Association between neighboring alleles
 - Expected to decrease with distance
 - Measures of linkage disequilibrium
 - D, D' and Δ^2 or r^2

Previously ...

- DNA sequence variation
 Types of DNA variants
- Allele frequencies

- Genotype frequencies
 - Hardy-Weinberg Equilibrium

Making predictions...


- What allele frequencies do we expect?
- How much variation in a gene?

• How are neighboring variants related?

Simple Approach: Simulation

- 1. N starting sequences
- 2. Sample N offspring sequences
 - Apply mutations according to μ
- 3. Increment time
- 4. If enough time has passed...
 - Generate final sample
 - Stop.
- 5. Otherwise, return to step 1.

Simulating a Population ...

Today

- Introduce coalescent approach
 - Framework for studying genetic variation
 - Provides intuition on patterns of variation
 - Provides analytical solutions

Aim ...

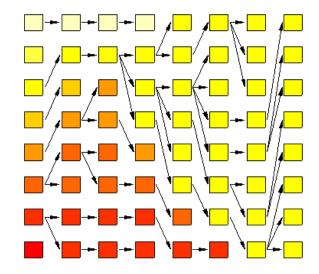
• Gene genealogies:

- Descriptions of relatedness between sequences
- Analogous to phylogenetic trees for species
- The shape of the genealogy depends on population history, selection, etc.
- Together with mutation rate, genealogy predicts DNA variation

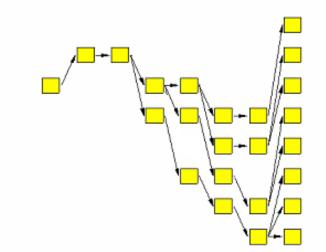
Genealogy

History of a particular set of sequences

- Describes their relatedness
- Specifies divergence times


Includes only a subset of the population

Most Recent Common Ancestor (MRCA)


Coalescent approach

- Generate genealogy for a sample of sequences.
 - Introduces computational and analytical convenience.
- Instead of proceeding forward through time, go backwards!

History of the Population

Genealogy of Final Population

Levels of Complexity

- History of the population
 - Includes sequences that are "extinct"
- History of all modern sequences
 - Includes sequences that we haven't sampled
- History of a subset of modern sequences
 - Minimalist approach!

Parameters we will focus on...

- Mutation rate (μ)
- Population Size
 - Haploid population (N chromosomes)
 - Diploid population (2N chromosomes)
- Time (t)
- Sample size (n)
- Recombination rate (r)

Other Parameters

Selection

- For gene of interest
- For neighboring gene

Demographic parameters

- Migration
- Population Structure
- Population Growth

Mutation Model

- The mutation process is complex
 - Rate depends on surrounding sequence
 - Reverse mutations are possible
- Two simple models are popular
 - Infinite alleles
 - Every mutation generates a different allele
 - Infinite sites
 - Every mutation occurs at a different site

Mutation Model

- Focus on infinite sites model
 - Mutation rate in genomic DNA is ~10⁻⁸ / bp
 - Recurrent mutations should be very rare
- Scaled mutation rate parameter, e.g.:
 - 1000 bp sequence
 - 10⁻⁸ mutations per base pair per generation
 - $\mu = 10^{-5}$ per sequence per generation

Neutral Variants

Variants that do not affect fitness

Accumulate inexorably through time

Lost through genetic drift

Do not affect genealogy

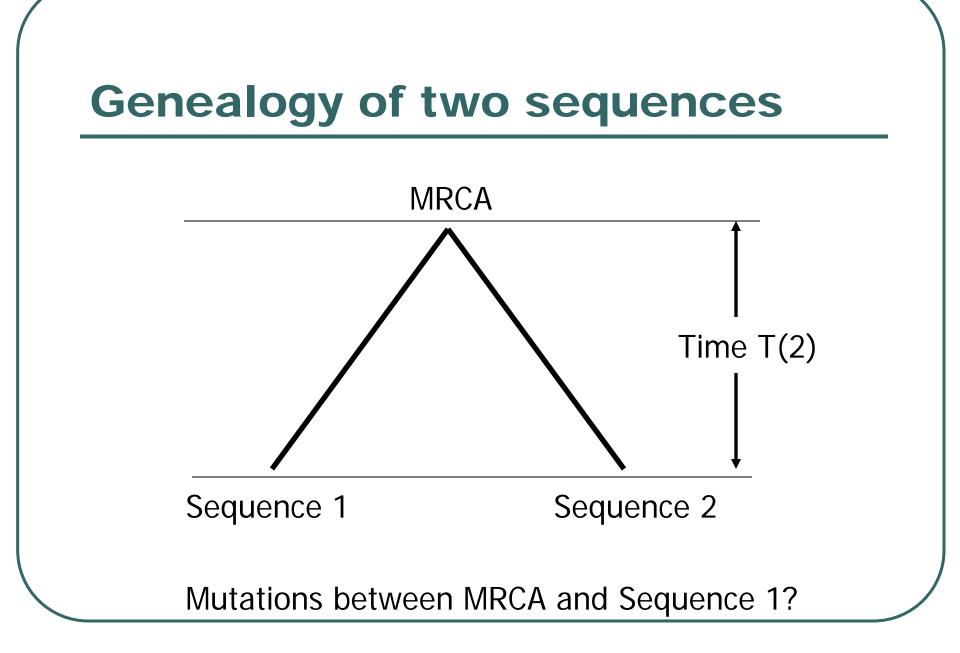
Example: Modeling Accumulation of Mutations

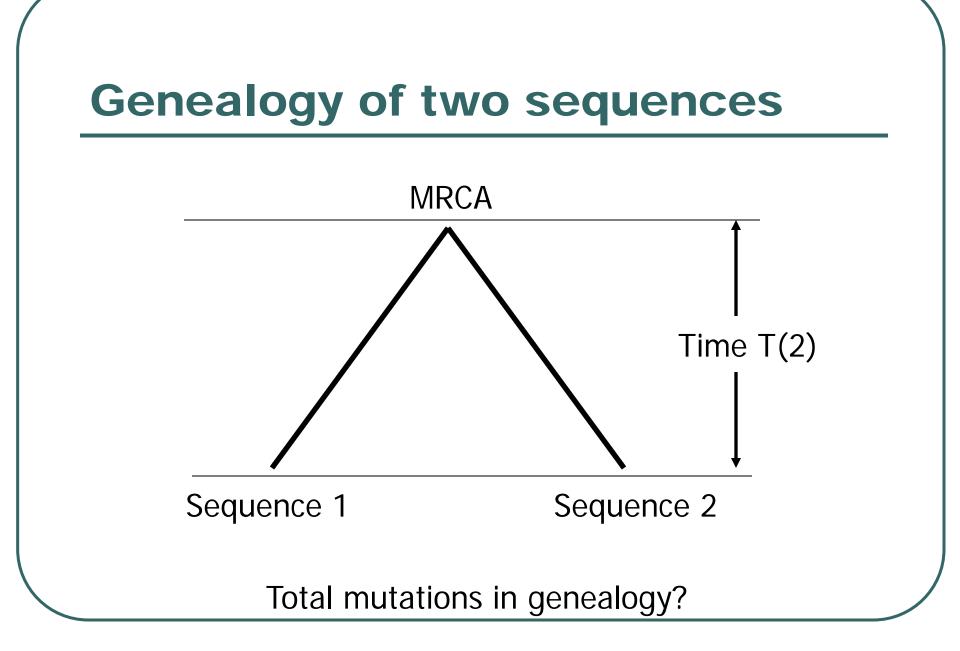
- Population of identical sequences
- Sample one descendant after t generations
- How many mutations have accumulated?
 - Hint: depends on mutation rate μ and time t
- Tougher questions
 - How many mutations have been fixed?
 - How much variation in the total population?

So far ...

• Divergence of a single sequence

- Accumulation of mutations
- Depends on time t
- Depends on mutation rate μ
- Does not depend on population size N
- Does not depend on population growth
- Next: A pair of sequences!


A tougher example ...


Sample of two sequences

100 bp each...

• How many differences are expected?

- Population of size, N = 1000
- Mutation rate
 - $\mu = 10^{-8}$ / bp / generation
 - $\mu \approx 10^{-6}$ / 100 bp / generation

Number of mutations S

 Distributed as Poisson, conditional on total tree length

•
$$E(S) = \mu E(T_{tot})$$

•
$$Var(S) = \mu E(T_{tot}) + \mu^2 Var(T_{tot})$$

T_{tot} is the total length of all branches

Estimating T(2)

 Probability that two sequences have distinct ancestors in previous generation

$$P(2) = \frac{N-1}{N} = 1 - \frac{1}{N}$$

 Probability of distinct ancestors for t generations is P(2)^t

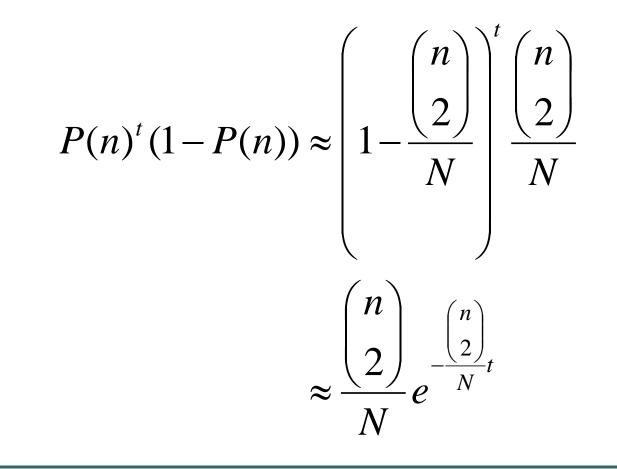
Probability of MRCA at time t+1

$$P(2)^{t} (1 - P(2)) = \frac{1}{N} \left(\frac{N - 1}{N} \right)^{t}$$
$$= \frac{1}{N} \left(1 - \frac{1}{N} \right)^{t}$$
$$\approx \frac{1}{N} e^{-\frac{1}{N}t}$$

For n > 2

- Coalescence when two sequences have common ancestor
 - For simplicity, consider the possibility of multiple simultaneous coalescent events to be negligible
- Requirements for no coalescence:
 - Pick one ancestor for sequence 1
 - Pick distinct ancestor for sequence 2
 - Pick yet another ancestor for sequence 3

Estimating P(n)


 Probability that n sequences have n distinct ancestors in previous generation

$$P(n) = \prod_{i=1}^{n-1} \frac{N-i}{N}$$
$$\approx 1 - \frac{\binom{n}{2}}{N}$$

• Assume:

- N is large
- n is small
- Terms of order N⁻² can be ignored

Probability of Coalescence at Time t+1

Time to next coalescent event

 Use an exponential distribution to approximate time to next coalescent event...

Decay Rate
$$\lambda = \frac{\binom{n}{2}}{N}$$

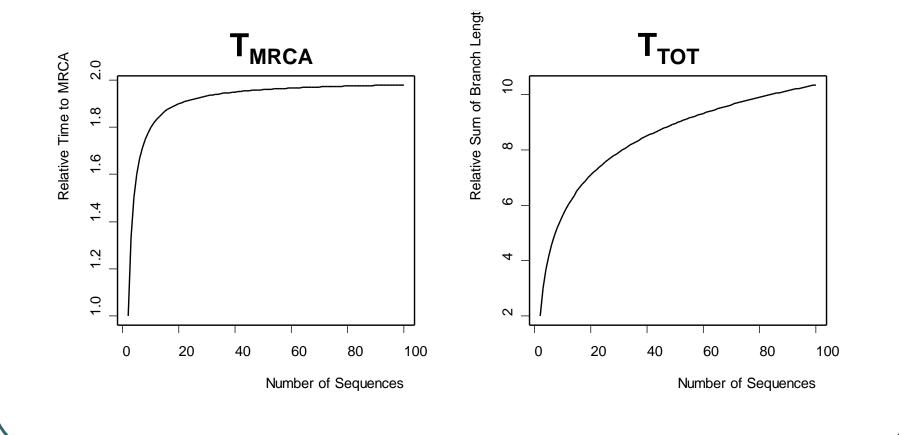
Mean
$$\frac{1}{\lambda} = \frac{N}{\binom{n}{2}}$$

T(j)

- For convenience, measure time to next coalescent event in units:
 - N generations for haploids
 - 2N generations for diploids

$$E(T_j) = 1 / \binom{j}{2}$$

 How would you calculate time to MRCA of n sequences?


Total "Time in Tree"

- Sum of all the branch lengths
- Total evolutionary time available
 - e.g. for mutations to occur

1

$$E(T_{tot}) = \sum_{i=2}^{n} iT(i) = \sum_{i=2}^{n} \frac{2i}{i(i-1)}$$
$$= \sum_{i=2}^{n} \frac{2}{i-1} = \sum_{i=1}^{n-1} \frac{2}{i}$$

T_{MRCA} vs. T_{TOT}

Number of Segregating Sites

Commonly named S

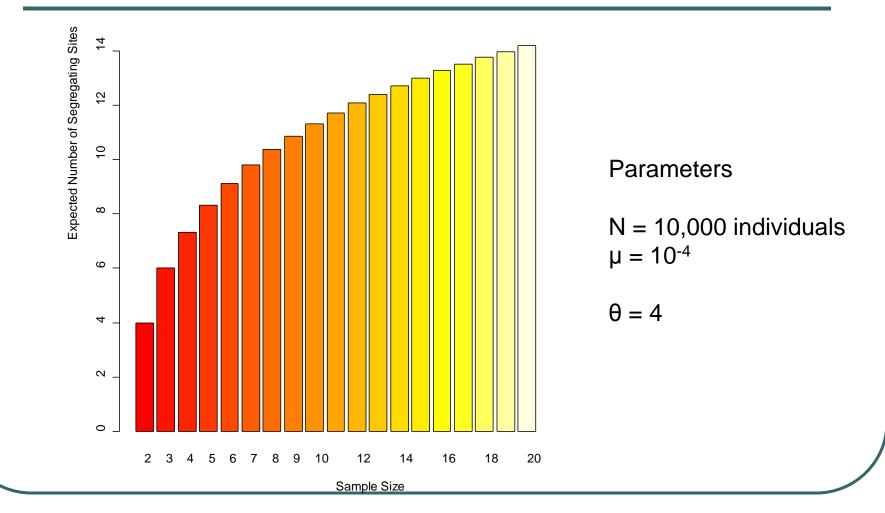
- Total number of mutations in genealogy
 - Assuming no recurrent mutation
 - A function of the total length of the genealogy
 T_{tot}

Expected number of mutations

• Factor N for haploids, 2N for diploids

$$E(S) = 2N\mu \sum_{i=2}^{n} iE(T(i))$$
$$= 4N\mu \sum_{i=1}^{n-1} 1/i$$
$$= \theta \sum_{i=1}^{n-1} 1/i$$

- Population geneticists define $\theta = 4N\mu$ (for diploids)
 - For gene mappers, θ is usually the recombination rate
 - For population geneticists, r is the recombination rate

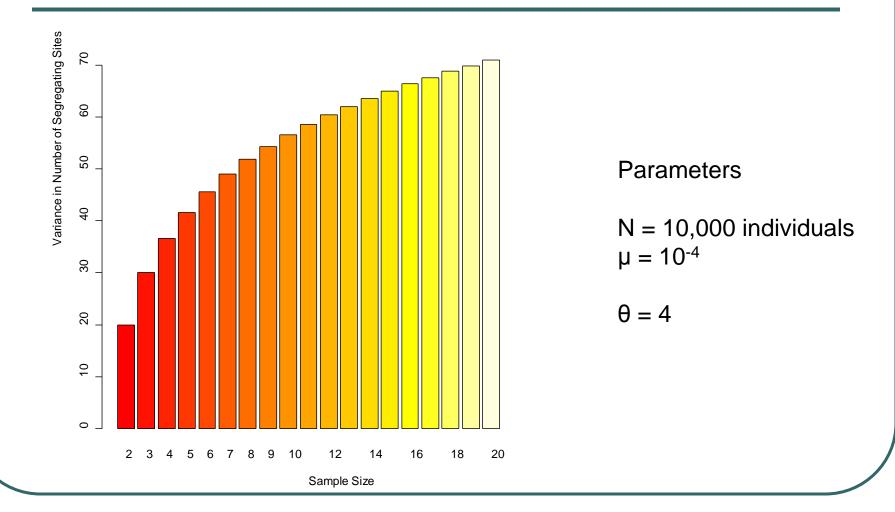

Expected number of mutations

• Factor N for haploids, 2N for diploids $E(S) = 2N\mu \sum_{i=2}^{n} iE(T(i))$

$$= 4N\mu \sum_{i=1}^{n-1} 1/i$$
$$= \theta \sum_{i=1}^{n-1} 1/i$$

- Population geneticists define $\theta = 4N\mu$ (for diploids)
 - For gene mappers, θ is usually the recombination rate
 - Population geneticists, use r for recombination rates

E(S) as a function of *n*

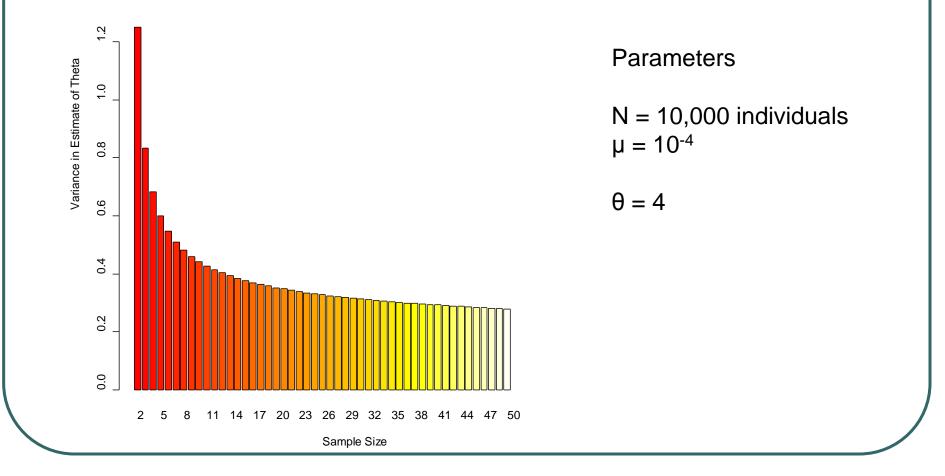

More about S...

Very large variance

$$Var(S) = \theta \sum_{i=1}^{n-1} \frac{1}{i} + \theta^2 \sum_{i=1}^{n-1} \frac{1}{i^2}$$

 Most of the variance contributed by early coalescent events (i.e. with small n)

Var(S) as a function of *n*


Inferences about θ

- Could be estimated from S
 - Divide by expected length of genealogy

$$\hat{\theta} = \frac{S}{\sum_{i=1}^{n-1} 1/i}$$

- Could then be used to:
 - Estimate N, if mutation rate μ is known
 - Estimate μ , if population size N is known

Var($\hat{\boldsymbol{\theta}}$) as a function of *n*

Alternative Estimator for θ ...

 Count pairwise differences between sequences

Compute average number of differences

$$\widetilde{\theta} = \binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{ij}$$

Today...

Probability of coalescence events

Length of genealogy and its branches

Expected number of mutations

Simple estimates of θ

Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process

Oxford Surveys in Evolutionary Biology, Vol. 7. D. Futuyma and J. Antonovics (Eds). Oxford University Press, New York.