Difference between revisions of "Karma-colorspace"

From Genome Analysis Wiki
Jump to: navigation, search
m
 
Line 82: Line 82:
 
== Auxiliary tools ==
 
== Auxiliary tools ==
  
The ABI SOLiD platform generates separate FASTA and quality files named&nbsp; XXX.csfasta&nbsp; and&nbsp; XXX\_QV.qual.&nbsp; We provide a script&nbsp; ''solid2csfastq.py''&nbsp; which converts these into a single color space FASTQ file named&nbsp; XXX.csfastq.&nbsp; We believe that a single color space FASTQ file simplifies post processing.<br>
+
The ABI SOLiD platform generates separate FASTA and quality files named&nbsp; XXX.csfasta&nbsp; and&nbsp; XXX_QV.qual.&nbsp; We provide a script&nbsp; ''solid2csfastq.py''&nbsp; which converts these into a single color space FASTQ file named&nbsp; XXX.csfastq.&nbsp; We believe that a single color space FASTQ file simplifies post processing.<br>
  
 
== Choose an appropriate size for word index ==
 
== Choose an appropriate size for word index ==

Latest revision as of 23:54, 27 January 2010

Overview

KARMA (K-tuple Alignment with Rapid Matching Algorithm) is able to map 35 bp single end color space reads at a speed of approximately 1.2-2.0 \times 10^9 reads per hour using Intel Xeon X760 2.66GHz and 128G memory.

We summarize the input data requirements as following:

Please note the hardware requirements for KARMA are:

  • 20G memory. By using shared memory for the word index tables, multiple instances of KARMA can run on one machine without using more memory than running a single instance.
  • 30G disk space


We show a complete example demonstrating the whole procedure from building the word index to mapping color space reads in A Complete Example.

Build Binary Reference Genome and Word Index

First, build a binary version of the genome reference sequence as nucleotides (option: --createReference). Suppose that NCBI36.fa is a FASTA file which contains the nucleotide sequences for all chromosomes.

The command to invoke is:

  karma --createReference --reference NCBI36.fa


(To let KARMA map nucleotide space reads, one would use instead --createIndex  to create both a packed binary sequence file and the word index files.)

Second, one also needs to build color space versions of both the genome reference sequence (option: --createReference) and the word index files (option: --createIndex).  The same nucleotide FASTA file is used.  However, to avoid naming conflicts among the resulting binary files, we suggest appending "CS" to the base file name for clarity.  The command to invoke is:

  ln -s NCBI36.fa NCBI36CS.fa
  karma --colorSpace --createReference --createIndex --reference NCBI36CS.fa


When building the index files, one can set the word length for indexing.  We recommend N = 15 (the default value) for the human genome on a machine with at least 20 Gb of RAM.  Shorter index words will decrease the memory footprint at the cost of increased run time.  However, the word length must not exceed half the length of the color space reads you intend to map, minus 1.  (See Choose an appropriate size for word index for more discussion.)  Specify ``--wordSize N`` in order to use N as the word size.


Map Color Space Reads

KARMA expects valid color space FASTQ files as input.  We often use the suffix .csfastq to distinguish these from nucleotide space reads.  With a .csfastq   file of single end color space reads named   single.csfastq,   invoke the command:

  karma --reference NCBI36.fa --csReference NCBI36CS.fa --colorSpace single.csfastq

This command line specifies both the nucleotide and color space reference sequences (and the word indexes, invisibly).  The output will be written to a file in .sam format named   "single.sam"  derived from the .fastq  file name.
 

Multiple input files are also acceptable and will produce multiple .sam output files, e.g.

  karma --reference NCBI36.fa --csReference NCBI36CS.fa --colorSpace \
  single.1.csfastq  single.2.csfastq  single.3.csfastq

For paired end color space reads, use the option "--pairedReads".  Suppose the paired end reads are stored in two files,  pair.1.csfastq  and  pair.2.csfastq.  The command to invoke is:

  karma --reference NCBI36.fa --csReference NCBI36CS.fa --colorSpace \
  --pairedReads  pair.1.csfastq  pair.2.csfastq

The mapping results will be stored in a .sam  file named  "pair.1.sam", which contains reads from both files.  If multiple paired end read files are specified on the command line, KARMA will pair the 1st and 2nd files, 3rd and 4th files, etc. and write output files  "pair.1.sam", "pair.3.sam", etc.

  karma --reference NCBI36.fa --csReference NCBI36CS.fa --colorSpace \
  --pairedReads  pair.1.csfastq  pair.2.csfastq  pair.3.csfastq  pair.4.csfastq

Additional Information

Input file requirement

KARMA requires input files in color space FASTQ format. The length of each read (which includes the leading primer base) should equal the length of its quality string. An example of a valid color space FASTQ file follows:

 @Chromosome_20_048435095_Genome_2757096147
 A02232200222021320012102212311002212
 +
 !!1111111111111111111111111111111111

Minimum read length requirement

Keep in mind that KARMA requires color space reads that are at least twice as long as the index word size plus two (including the leading primer base).  (For nucleotide space, the minimum read length is twice the word size.)  For example, KARMA uses an index word size of 15 by default, so it will only map color space reads that are 32 colors or longer (including the primer base).

Auxiliary tools

The ABI SOLiD platform generates separate FASTA and quality files named  XXX.csfasta  and  XXX_QV.qual.  We provide a script  solid2csfastq.py  which converts these into a single color space FASTQ file named  XXX.csfastq.  We believe that a single color space FASTQ file simplifies post processing.

Choose an appropriate size for word index

The length of the index words influences mapping performance.  Using short index words increases the number of calculation cycles for a single read and duplications of a single word.  On the other side, long index words require much larger memory.  Please also keep in mind that appropriate size is related to your hardware architecture.  For practical purposes, with at least 20 Gb of RAM, we find that a size of 15 is optimal.

A Complete Example

A wrap-up message for quick start mapping color space reads.

Building binary genome reference and word index:

  karma --createReference --reference NCBI36.fa
  ln -s NCBI36.fa NCBI36CS.fa
  karma --colorSpace --createReference --createIndex --reference NCBI36CS.fa

Mapping color space reads:

  karma --reference NCBI36.fa --csReference NCBI36CS.fa --colorSpace single.csfastq
  karma --reference NCBI36.fa --csReference NCBI36CS.fa --colorSpace \
  --pairedReads pair.1.csfastq pair.2.csfastq

The output files are  single.sam  and  pair.1.sam  and they conform to the .sam format specification.