Changes

From Genome Analysis Wiki
Jump to navigationJump to search
1,036 bytes added ,  17:49, 16 March 2018
no edit summary
Line 1: Line 1:  +
[[Category:RAREMETALWORKER]]
 +
==Useful Links==
 +
 +
Here are some useful links to key pages:
 +
* The [[RAREMETALWORKER | '''RAREMETALWORKER documentation''']]
 +
* The [[RAREMETALWORKER_command_reference | '''RAREMETALWORKER command reference''']]
 +
* The [[RAREMETALWORKER_SPECIAL_TOPICS | '''RAREMETALWORKER special topics''']]
 +
* The [[Tutorial:_RAREMETAL | '''RAREMETALWORKER quick start tutorial''']]
 +
* The [[RAREMETAL_method | '''RAREMETAL method''']]
 +
* The [[RAREMETAL_FAQ | '''FAQ''']]
 +
 
== Brief Introduction==
 
== Brief Introduction==
   Line 10: Line 21:  
We use the following notations to describe our methods:
 
We use the following notations to describe our methods:
   −
<math>\mathbf{y}</math> is the observed phenotype vector
+
<math>\mathbf{y}</math> is the vector of observed quantitative trait
 
  −
<math> \hat{\boldsymbol{\Omega}} </math> estimated covariance matrix of <math>\mathbf{y}</math>
      
<math>\mathbf{X}</math> is the design matrix
 
<math>\mathbf{X}</math> is the design matrix
Line 27: Line 36:     
<math>\boldsymbol{\varepsilon}</math> is the non-shared environmental effects
 
<math>\boldsymbol{\varepsilon}</math> is the non-shared environmental effects
 +
 +
<math> \hat{\boldsymbol{\Omega}} </math> is the estimated covariance matrix of <math>\mathbf{y}</math>
 +
 +
<math>\mathbf{K}</math> is the kinship matrix
 +
 +
<math>\mathbf{K_X}</math> is the kinship matrix of Chromosome X
 +
 +
<math> \sigma_g^2 </math> is the genetic component
 +
 +
<math> {{\sigma_g}_X}^2 </math> is the genetic component for markers on chromosome X
 +
 +
<math>\sigma_e^2 </math> is the non-shared-environment component.
    
===SINGLE VARIANT SCORE TEST===
 
===SINGLE VARIANT SCORE TEST===
Line 34: Line 55:  
<math> \mathbf{y}=\mathbf{X}\boldsymbol{\beta_c}+\beta_i(\mathbf{G_i}-\bar{\mathbf{G_i}})+\mathbf{g}+\boldsymbol{\varepsilon} </math>.
 
<math> \mathbf{y}=\mathbf{X}\boldsymbol{\beta_c}+\beta_i(\mathbf{G_i}-\bar{\mathbf{G_i}})+\mathbf{g}+\boldsymbol{\varepsilon} </math>.
   −
Here, [explain the formula].  
+
Here, the quantitive trait for an individual is a sum of covariate effects, additive genetic effect from the <math> i^{th} </math> variant and the polygenic background effects together with non-shared environmental effect.
    
In this model, <math>\beta_i</math> is to measure the additive genetic effect of the <math>i^{th}</math> variant. As usual, the score statistic for testing <math>H_0:\beta_i=0</math> is:
 
In this model, <math>\beta_i</math> is to measure the additive genetic effect of the <math>i^{th}</math> variant. As usual, the score statistic for testing <math>H_0:\beta_i=0</math> is:
Line 66: Line 87:  
where <math>l</math> is the count of variants, <math>G_i</math> and <math>f_i</math> are the genotype vector and estimated allele frequency for the <math>i^{th}</math> variant, respectively. Each element in <math>G_i</math> encodes the minor allele count for one individual. Model parameters <math>\hat{\boldsymbol{\beta}}</math>, <math>\hat{\sigma_g^2}</math> and <math>\hat{\sigma_e^2}</math>, are estimated using maximum likelihood and the efficient algorithm described in [http://www.nature.com/nmeth/journal/v8/n10/full/nmeth.1681.html Lippert et. al]. For convenience, let the estimated covariance matrix of <math>\mathbf{y}</math> be <math>\hat{\boldsymbol{\Omega}}=\hat{\sigma_g^2}\mathbf{K}+\hat{\sigma_e^2}\mathbf{I}</math>.
 
where <math>l</math> is the count of variants, <math>G_i</math> and <math>f_i</math> are the genotype vector and estimated allele frequency for the <math>i^{th}</math> variant, respectively. Each element in <math>G_i</math> encodes the minor allele count for one individual. Model parameters <math>\hat{\boldsymbol{\beta}}</math>, <math>\hat{\sigma_g^2}</math> and <math>\hat{\sigma_e^2}</math>, are estimated using maximum likelihood and the efficient algorithm described in [http://www.nature.com/nmeth/journal/v8/n10/full/nmeth.1681.html Lippert et. al]. For convenience, let the estimated covariance matrix of <math>\mathbf{y}</math> be <math>\hat{\boldsymbol{\Omega}}=\hat{\sigma_g^2}\mathbf{K}+\hat{\sigma_e^2}\mathbf{I}</math>.
   −
==Chromosome X==
+
===ANALYZING MARKERS ON CHROMOSOME X===
    
To analyze markers on chromosome X, we fit an extra variance components <math> {{\sigma_g}_X}^2 </math>, to model the variance explained by chromosome X. A kinship for chromosome X, <math> \boldsymbol{K_X} </math>, can be estimated either from a pedigree, or from genotypes of marker from chromosome X. Then the estimated covariance matrix can be written as <math>\hat{\boldsymbol{\Omega}}=\hat{\sigma_g^2}\mathbf{K}+\hat{{\sigma_g}_X^2}\mathbf{K_X}+\hat{\sigma_e^2}\mathbf{I}</math>.
 
To analyze markers on chromosome X, we fit an extra variance components <math> {{\sigma_g}_X}^2 </math>, to model the variance explained by chromosome X. A kinship for chromosome X, <math> \boldsymbol{K_X} </math>, can be estimated either from a pedigree, or from genotypes of marker from chromosome X. Then the estimated covariance matrix can be written as <math>\hat{\boldsymbol{\Omega}}=\hat{\sigma_g^2}\mathbf{K}+\hat{{\sigma_g}_X^2}\mathbf{K_X}+\hat{\sigma_e^2}\mathbf{I}</math>.
32

edits

Navigation menu