# Changes

,  00:04, 9 April 2014
Line 54: Line 54:
As described by Lin et. al, the p-value of this test can be calculated analytically using the fact that the burden test statistics together follow a multivariate normal distribution with mean $\mathbf{0}$ and covariance $\boldsymbol{\Omega}$

As described by Lin et. al, the p-value of this test can be calculated analytically using the fact that the burden test statistics together follow a multivariate normal distribution with mean $\mathbf{0}$ and covariance $\boldsymbol{\Omega}$
−
$\left(T_{b\left(f_1\right)},T_{b\left(f_2\right)},\dots,T_{b\left(f_m\right)}\right)$$\sim\mathbf{MVN}\left(\mathbf{0},\boldsymbol{\Omega}\right)\text{,}$$\text{where }\boldsymbol{\Omega_{ij}}=\frac{\boldsymbol{\phi}_{f_i}^T\left(\sum_{i=1}^n{\mathbf{V_i}}\right)\boldsymbol{\phi}_{f_j}}{\sqrt{\boldsymbol{\phi}_{f_i}^T\left(\sum_{i=1}^n{\mathbf{V_i}}\right)\boldsymbol{\phi}_{f_i}}\sqrt{\boldsymbol{\phi}_{f_j}^T\left(\sum_{i=1}^n{\mathbf{V_i}}\right)\boldsymbol{\phi}_{f_j}}}$
+
$\left(T_{b\left(f_1\right)},T_{b\left(f_2\right)},\dots,T_{b\left(f_m\right)}\right)$$\sim\mathbf{MVN}\left(\mathbf{0},\boldsymbol{\Omega}\right)$
+

+
where $\boldsymbol{\Omega_{ij}}=\frac{\boldsymbol{\phi}_{f_i}^T\left(\sum_{i=1}^n{\mathbf{V_i}}\right)\boldsymbol{\phi}_{f_j}}{\sqrt{\boldsymbol{\phi}_{f_i}^T\left(\sum_{i=1}^n{\mathbf{V_i}}\right)\boldsymbol{\phi}_{f_i}}\sqrt{\boldsymbol{\phi}_{f_j}^T\left(\sum_{i=1}^n{\mathbf{V_i}}\right)\boldsymbol{\phi}_{f_j}}}$

===SKAT META ANALYSIS===

===SKAT META ANALYSIS===
2,004

edits