From Genome Analysis Wiki
Jump to navigationJump to search
6 bytes added
, 23:25, 8 April 2014
Line 45: |
Line 45: |
| | | |
| Including variants that are not associated to phenotype can hurt power. Variable threshold test is designed to choose the optimal allele frequency threshold amongst rare variants in a gene, to gain power. The test statistic is defined as the maximum burden score statistic calculated using every possible frequency threshold | | Including variants that are not associated to phenotype can hurt power. Variable threshold test is designed to choose the optimal allele frequency threshold amongst rare variants in a gene, to gain power. The test statistic is defined as the maximum burden score statistic calculated using every possible frequency threshold |
| + | |
| | | |
| <math>T_{meta_{VT}}=\max(T_{b\left(f_1\right)},T_{b\left(f_2\right)},\dots,T_{b\left(f_m\right)})</math>, | | <math>T_{meta_{VT}}=\max(T_{b\left(f_1\right)},T_{b\left(f_2\right)},\dots,T_{b\left(f_m\right)})</math>, |
| | | |
| where <math>T_{b\left(f_i\right)}</math> is the burden test statistic under allele frequency threshold <math>f_i</math>, and can be constructed from single variant meta-analysis statistics using | | where <math>T_{b\left(f_i\right)}</math> is the burden test statistic under allele frequency threshold <math>f_i</math>, and can be constructed from single variant meta-analysis statistics using |
| + | |
| | | |
| <math>T_{b\left(f_j\right)}=\boldsymbol{\phi}_{f_j}^\mathbf{T}\mathbf{U_{meta}}\bigg/\sqrt{\boldsymbol{\phi}_{f_j}^\mathbf{T}\mathbf{V_{meta}}\boldsymbol{\phi}_{f_j}} </math>, | | <math>T_{b\left(f_j\right)}=\boldsymbol{\phi}_{f_j}^\mathbf{T}\mathbf{U_{meta}}\bigg/\sqrt{\boldsymbol{\phi}_{f_j}^\mathbf{T}\mathbf{V_{meta}}\boldsymbol{\phi}_{f_j}} </math>, |
| + | |
| | | |
| where <math>j</math> represents any allele frequency in a group of rare variants, <math>\boldsymbol{\phi}_{f_j}</math> is a vector of 0 and 1, indicating if a variant is included in the analysis using frequency threshold <math>f_i</math>. | | where <math>j</math> represents any allele frequency in a group of rare variants, <math>\boldsymbol{\phi}_{f_j}</math> is a vector of 0 and 1, indicating if a variant is included in the analysis using frequency threshold <math>f_i</math>. |
| + | |
| | | |
| As described by [http://www.ncbi.nlm.nih.gov/pubmed/21885029 '''Lin et. al'''], the p-value of this test can be calculated analytically using the fact that the burden test statistics together follow a multivariate normal distribution with mean <math>\mathbf{0}</math> and covariance <math>\boldsymbol{\Omega}</math>, written as | | As described by [http://www.ncbi.nlm.nih.gov/pubmed/21885029 '''Lin et. al'''], the p-value of this test can be calculated analytically using the fact that the burden test statistics together follow a multivariate normal distribution with mean <math>\mathbf{0}</math> and covariance <math>\boldsymbol{\Omega}</math>, written as |
| + | |
| | | |
| <math> \left(T_{b\left(f_1\right)},T_{b\left(f_2\right)},\dots,T_{b\left(f_m\right)}\right)</math><math>\sim\mathbf{MVN}\left(\mathbf{0},\boldsymbol{\Omega}\right) </math>, | | <math> \left(T_{b\left(f_1\right)},T_{b\left(f_2\right)},\dots,T_{b\left(f_m\right)}\right)</math><math>\sim\mathbf{MVN}\left(\mathbf{0},\boldsymbol{\Omega}\right) </math>, |
| + | |
| | | |
| where <math>\boldsymbol{\Omega_{ij}}=\frac{\boldsymbol{\phi}_{f_i}^T\mathbf{V_{meta}}\boldsymbol{\phi}_{f_j}}{\sqrt{\boldsymbol{\phi}_{f_i}^T\mathbf{V_{meta}}\boldsymbol{\phi}_{f_i}}\sqrt{\boldsymbol{\phi}_{f_j}^T\mathbf{V_{meta}}\boldsymbol{\phi}_{f_j}}}</math>. | | where <math>\boldsymbol{\Omega_{ij}}=\frac{\boldsymbol{\phi}_{f_i}^T\mathbf{V_{meta}}\boldsymbol{\phi}_{f_j}}{\sqrt{\boldsymbol{\phi}_{f_i}^T\mathbf{V_{meta}}\boldsymbol{\phi}_{f_i}}\sqrt{\boldsymbol{\phi}_{f_j}^T\mathbf{V_{meta}}\boldsymbol{\phi}_{f_j}}}</math>. |