Changes

From Genome Analysis Wiki
Jump to navigationJump to search
5,476 bytes added ,  17:49, 16 March 2018
no edit summary
Line 1: Line 1:  +
[[Category:RAREMETALWORKER]]
 +
==Useful Links==
 +
 +
Here are some useful links to key pages:
 +
* The [[RAREMETALWORKER | '''RAREMETALWORKER documentation''']]
 +
* The [[RAREMETALWORKER_command_reference | '''RAREMETALWORKER command reference''']]
 +
* The [[RAREMETALWORKER_SPECIAL_TOPICS | '''RAREMETALWORKER special topics''']]
 +
* The [[Tutorial:_RAREMETAL | '''RAREMETALWORKER quick start tutorial''']]
 +
* The [[RAREMETAL_method | '''RAREMETAL method''']]
 +
* The [[RAREMETAL_FAQ | '''FAQ''']]
 +
 
== Brief Introduction==
 
== Brief Introduction==
RAREMETALWORKER(RMW) generates single variant association results from score test, together with summary statistics and covariance matrices of the score statistics. In the following sections, we will go through the methods behind RWM including statistic model, handling sample relatedness, and the definition of the statistics in the output.
     −
== Modeling Relatedness ==
+
[[RAREMETALWORKER]] generates single variant association test statistics for a single study prior to meta-analysis. This page provides a brief description of the statistics that
 +
RAREMETALWORKER calculates, together with key formulae.
 +
 
 +
== Key Statistics for Analysis of Single Study ==
 +
 
 +
===NOTATIONS===
 +
 
 +
We use the following notations to describe our methods:
 +
 
 +
<math>\mathbf{y}</math> is the vector of observed quantitative trait
 +
 
 +
<math>\mathbf{X}</math> is the design matrix
 +
 
 +
<math>\mathbf{G_i}</math> is the genotype vector of the <math>i^{th}</math> variant
 +
 
 +
<math> \bar{\mathbf{G_i}}</math> is the vector of average genotype of the <math>i^{th}</math> variant
 +
 
 +
<math>\boldsymbol{\beta_c}</math> is the vector of covariate effects
 +
 
 +
<math>\beta_i</math> is the scalar of fixed genetic effect of the <math>i^{th}</math> variant
 +
 
 +
<math>\mathbf{g}</math> is the random genetic effects
 +
 
 +
<math>\boldsymbol{\varepsilon}</math> is the non-shared environmental effects
 +
 
 +
<math> \hat{\boldsymbol{\Omega}} </math> is the estimated covariance matrix of <math>\mathbf{y}</math>
 +
 
 +
<math>\mathbf{K}</math> is the kinship matrix
 +
 
 +
<math>\mathbf{K_X}</math> is the kinship matrix of Chromosome X
 +
 
 +
<math> \sigma_g^2 </math> is the genetic component
 +
 
 +
<math> {{\sigma_g}_X}^2 </math> is the genetic component for markers on chromosome X
 +
 
 +
<math>\sigma_e^2 </math> is the non-shared-environment component.
 +
 
 +
===SINGLE VARIANT SCORE TEST===
 +
 
 +
We used the following model for the trait:
 +
 
 +
<math> \mathbf{y}=\mathbf{X}\boldsymbol{\beta_c}+\beta_i(\mathbf{G_i}-\bar{\mathbf{G_i}})+\mathbf{g}+\boldsymbol{\varepsilon} </math>.
 +
 
 +
Here,  the quantitive trait for an individual is a sum of covariate effects, additive genetic effect from the <math> i^{th} </math> variant and the polygenic background effects together with non-shared environmental effect.
 +
 
 +
In this model, <math>\beta_i</math> is to measure the additive genetic effect of the <math>i^{th}</math> variant. As usual, the score statistic for testing <math>H_0:\beta_i=0</math> is:
 +
 
 +
<math> U_i=(\mathbf{G_i}-\mathbf{\bar{G_i}} )^T \hat{\boldsymbol{\Omega}}^{-1}(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}) </math>
 +
 
 +
We further derive the variance-covariance matrix of these statistics as
 +
 
 +
<math> \mathbf{V}=(\mathbf{G}-\bar{\mathbf{G}})^T (\hat{\boldsymbol{\Omega}}^{-1}-\hat{\boldsymbol{\Omega}}^{-1} \mathbf{X}(\mathbf{X^T}\hat{\boldsymbol{\Omega}}^{-1}\mathbf{X})^{-1} \mathbf{X^T} \hat{\boldsymbol{\Omega}}^{-1})(\mathbf{G}-\bar{\mathbf{G}}) </math>.
 +
 
 +
The score test statistic, <math>T_i=(U_i^2)/V_{ii}</math>,  is asymptotically distributed as chi-squared with one degree of freedom. The score test p-value is reported in RAREMETALWORKER.
 +
 
 +
===SUMMARY STATISTICS AND COVARIANCE MATRICES===
 +
 
 +
RAREMETALWORKER automatically stores the score statistics for each marker ( <math> U_i </math>) together with quality information of that marker, including HWE p-value, call rate, and allele counts.
 +
 
 +
RAREMETALWORKER also stores the covariance matrices (<math> \mathbf{V} </math>) of the score statistics of markers within a window, size of which can be specified through command line.
 +
 
 +
=== MODELING RELATEDNESS ===
 +
We use a variance component model to handle familial relationships. We estimate the variance components under the null model:
 +
 
 +
<math>\mathbf{y}=\mathbf{X}\boldsymbol{\beta} +\mathbf{g}+ \boldsymbol{\varepsilon}</math>
 +
 
 +
 
 +
We assume that genetic effects are normally distributed, with mean <math>\mathbf{0}</math> and covariance <math>\mathbf{K}\sigma_g^2</math> where the matrix <math>\mathbf{K}</math> summarizes kinship coefficients between sampled individuals and  <math>\sigma_g^2</math> is a positive scalar describing the genetic contribution to the overall variance. We assume that non-shared environmental effects are normally distributed with mean <math>\mathbf{0}</math> and covariance <math>\mathbf{I}\sigma_e^2</math>, where <math>\mathbf{I}</math> is the identity matrix.
 +
 
 +
To estimate <math>\mathbf{K}</math>, we either use known pedigree structure to define <math>\mathbf{K}</math> or else use the empirical estimator
 +
 
 +
<math>\mathbf{K}=\frac{1}{l}\sum_{i=1}^l{(G_i-2f_i\mathbf{1})(G_i-2f_i\mathbf{1})\over 4f_i(1-f_i)} </math>,
 +
 
 +
where <math>l</math> is the count of variants, <math>G_i</math> and <math>f_i</math> are the genotype vector and estimated allele frequency for the <math>i^{th}</math> variant, respectively. Each element in <math>G_i</math> encodes the minor allele count for one individual. Model parameters <math>\hat{\boldsymbol{\beta}}</math>, <math>\hat{\sigma_g^2}</math> and <math>\hat{\sigma_e^2}</math>, are estimated using maximum likelihood and the efficient algorithm described in [http://www.nature.com/nmeth/journal/v8/n10/full/nmeth.1681.html Lippert et. al]. For convenience, let the estimated covariance matrix of <math>\mathbf{y}</math> be <math>\hat{\boldsymbol{\Omega}}=\hat{\sigma_g^2}\mathbf{K}+\hat{\sigma_e^2}\mathbf{I}</math>.
 +
 
 +
===ANALYZING MARKERS ON CHROMOSOME X===
   −
== Modeling Relatedness ==
+
To analyze markers on chromosome X, we fit an extra variance components <math> {{\sigma_g}_X}^2 </math>, to model the variance explained by chromosome X. A kinship for chromosome X, <math> \boldsymbol{K_X} </math>, can be estimated either from a pedigree, or from genotypes of marker from chromosome X. Then the estimated covariance matrix can be written as <math>\hat{\boldsymbol{\Omega}}=\hat{\sigma_g^2}\mathbf{K}+\hat{{\sigma_g}_X^2}\mathbf{K_X}+\hat{\sigma_e^2}\mathbf{I}</math>.
== Summary Statistics ==
  −
== Covariance Matrices ==
 
32

edits

Navigation menu