Changes

From Genome Analysis Wiki
Jump to navigationJump to search
No change in size ,  11:15, 11 March 2014
Line 12: Line 12:     
To estimate <math>\mathbf{K}</math>, we either use known pedigree structure to define <math>\mathbf{K}</math> or else use the empirical estimator <math>\mathbf{K}=\frac{1}{l}\sum_{i=1}^l{(G_i-2f_i\mathbf{1})(G_i-2f_i\mathbf{1})\over 4f_i(1-f_i)} </math>,  
 
To estimate <math>\mathbf{K}</math>, we either use known pedigree structure to define <math>\mathbf{K}</math> or else use the empirical estimator <math>\mathbf{K}=\frac{1}{l}\sum_{i=1}^l{(G_i-2f_i\mathbf{1})(G_i-2f_i\mathbf{1})\over 4f_i(1-f_i)} </math>,  
where <math>l</math> is the count of variants, <math>G_i</math> and <math>f_i</math> are the genotype vector and estimated allele frequency for the <math>i^{th}</math> variant, respectively. Each element in <math>G_i</math> encodes the minor allele count for one individual. Model parameters <math>\mathbf{\hat{\beta}}</math>, <math>\hat{\sigma_g^2}</math> and <math>\hat{\sigma_e^2}</math>, are estimated using maximum likelihood and the efficient algorithm described in Lippert et. al. For convenience, let the estimated covariance matrix of <math>\mathbf{y}</math> be <math>\mathbf{\Omega}=2\sigma_g^2\mathbf{K}+\sigma_e^2\mathbf{I}</math>.
+
where <math>l</math> is the count of variants, <math>G_i</math> and <math>f_i</math> are the genotype vector and estimated allele frequency for the <math>i^{th}</math> variant, respectively. Each element in <math>G_i</math> encodes the minor allele count for one individual. Model parameters <math>\hat{\mathbf{\beta}}</math>, <math>\hat{\sigma_g^2}</math> and <math>\hat{\sigma_e^2}</math>, are estimated using maximum likelihood and the efficient algorithm described in Lippert et. al. For convenience, let the estimated covariance matrix of <math>\mathbf{y}</math> be <math>\mathbf{\Omega}=2\sigma_g^2\mathbf{K}+\sigma_e^2\mathbf{I}</math>.
    
== Single Variant Score Tests ==
 
== Single Variant Score Tests ==
2,004

edits

Navigation menu